Advertisement

Bacterial Probiotics: A Truly Green Revolution

  • Paula García-FraileEmail author
  • Esther Menéndez
  • Lorena Celador-Lera
  • Alexandra Díez-Méndez
  • Alejandro Jiménez-Gómez
  • Marta Marcos-García
  • Xavier Alexis Cruz-González
  • Pilar Martínez-Hidalgo
  • Pedro F. Mateos
  • Raúl Rivas
Chapter

Abstract

Throughout history, the evolution and progress of all human civilizations have been closely linked to the evolution and development of agriculture, since this is the basis of food production to sustain population and ensure social stability.

At the beginning of the twentieth century, due to great advances in medicine, world population increased significantly. This fact was derived to a situation in which the need to significantly increase the ability to produce food was necessary in order to feed all those people. And so, the Green Revolution in the 1960s–1980s was derived in a great increase of crops yields, saving many millions of people from starvation. One of the key factors in the Green Revolution was the application of synthetic fertilizers and pesticides. Despite obvious benefit of these products in the amount of food produced, chemical fertilizers and pesticides have many negative impacts in health and environment.

Many bacterial strains have been described as plant probiotics, and, by improving availability of nutrients and plant health, they produce an increase in crops yields in an eco-friendly manner. The growing concern about protecting environment, human health, and the need to produce more food with the limited resources for an exponentially growing population in the Earth is making that many worldwide companies are increasingly producing and commercializing bacterial-based biofertilizers, and the plant probiotics market is growing all around the world – the new Green Revolution is here.

References

  1. Abela J and Valenzuela R (2007) Situación de los cultivos leguminosos y los Biofertilizantes en Bolivia. In: Izaguirre-Mayoral M, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. CYTED, BIOFAG, Uruguay. pp 61–67Google Scholar
  2. Abu Mweis SS, Jones PJ (2008) Cholesterol-lowering effect of plant sterols. Curr Artheroscl Rep 10(6):467–472CrossRefGoogle Scholar
  3. Ahemad M, Khan MS (2009a) Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotechnol 12(4):217–226CrossRefGoogle Scholar
  4. Ahemad M, Khan MS (2009b) Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis. Bull Environ Contam Toxicol 82(6):761–766PubMedCrossRefGoogle Scholar
  5. Ahemad M, Khan MS (2010a) Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot 29(4):325–329CrossRefGoogle Scholar
  6. Ahemad M, Khan MS (2010b) Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pesticide Biochem Physiol 98(2):183–190CrossRefGoogle Scholar
  7. Ahemad M, Khan MS (2010c) Insecticide-tolerant and plant-growth-promoting Rhizobium improves the growth of lentil (Lens esculentus) in insecticide-stressed soils. Pest Manag Sci 67(4):423–429CrossRefGoogle Scholar
  8. Ahemad M, Khan MS (2010d) Growth promotion and protection of lentil (Lens esculenta) against herbicide stress by Rhizobium species. Ann Microbiol 60(4):735–745CrossRefGoogle Scholar
  9. Ahemad M, Khan MS (2010e) Improvement in the growth and symbiotic attributes of fungicide-stressed chickpea plants following plant growth promoting fungicide-tolerant Mesorhizobium inoculation. Afr J Basic Appl Sci 2(3–4):111–116Google Scholar
  10. Ahemad M, Khan MS (2011a) Effect of tebuconazole-tolerant and plant growth promoting Rhizobium isolate MRP1 on pea–Rhizobium symbiosis. Sci Hortic 129(2):266–272CrossRefGoogle Scholar
  11. Ahemad M, Khan MS (2011b) Plant-Growth-Promoting fungicide-tolerant rhizobium improves growth and symbiotic characteristics of lentil (Lens esculentus) in fungicide-applied soil. J Plant Growth Regul 30(3):334–342CrossRefGoogle Scholar
  12. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20CrossRefGoogle Scholar
  13. Ahirwar NK, Gupta G, Singh V, Rawlley RK, Ramana S (2015) Influence on growth and fruit yield of tomato (Lycopersicon esculentum Mill.) plants by inoculation with Pseudomonas fluorescence (SS5): possible role of plant growth promotion. Int J Curr Microbiol App Sci 4:720–730Google Scholar
  14. Alam F, Bhuiyan MA, Alan SS, Waghmode TR, Kim PJ, Lee YB (2015) Effect of Rhizobium sp. BARIRGm901 inoculation on nodulation, nitrogen fixation and yield of soybean (Glycine max) genotypes in gray terrace soil. Biosci Biotechnol Biochem 79:1660–1668PubMedCrossRefGoogle Scholar
  15. Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40(11):2771–2779CrossRefGoogle Scholar
  16. Ang J, Banerjee R and Madsen J (2010) Innovation, technological change and the British Agricultural Revolution. Centre for Applied Macroeconomic Analysis. The Australian National University, CAMA Working Paper 11/2010Google Scholar
  17. Angus AA, Agapakis CM, Fong S, Yerrapragada S, Estrada-de los Santos P, Yang P, Song N, Kano S, Caballero-Mellado J, de Faria SM, Dakora FD, Weinstock G, Hirsch AM (2014) Plant-Associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. PLoS ONE 9(1): e83779. doi: 10.1371/journal.pone.0083779
  18. Araus J, Li J, Parry M, Wang J (2014) Phenotyping and other breeding approaches for a New Green Revolution. J Integr Plant Biol 56:422–424PubMedCrossRefGoogle Scholar
  19. Arora NK, Tiwari S, Singh R (2014) Comparative study of different carriers inoculated with nodule forming and free living plant growth promoting bacteria suitable for sustainable agriculture. J Plant Pathol Microbiol 5:229Google Scholar
  20. Banchio E, Bogino PC, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36(10):766–771CrossRefGoogle Scholar
  21. Bao Z, Sasaki K, Okubo T, Anda M, Hanzawa E, Kakizaki K, Sato T, Mitsui H, Minamisawa K (2013) Impact of Azospirillum sp. B510 inoculation on rice-associated bacterial communities in a paddy field. Microbes Environ 28:487–490PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770CrossRefGoogle Scholar
  23. Bashan Y, González LE (1999) Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biotechnol 51(2):262–266CrossRefGoogle Scholar
  24. Bashan Y, Hernandez JP, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 35(5):359–368CrossRefGoogle Scholar
  25. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil 378(1–2):1–33Google Scholar
  26. Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol. 7(11):1673–1685Google Scholar
  27. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18Google Scholar
  28. Berg G, Alavi M, Schmid M, Hartmann A (2013) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Molecular Microbial Ecology of the Rhizosphere, De Bruijn, FJ (Ed.). Wiley, New York, USA., ISBN-13, 1477764743, 1209–1216Google Scholar
  29. Bernabeu PR, Pistorio M, Torres-Tejerizo G, Estrada-De los Santos P, Galar ML, Boiardi JL, Luna MF (2015) Colonization and plant growth-promotion of tomato by Burkholderia tropica. Sci Hortic 191:113–120CrossRefGoogle Scholar
  30. Bharti N, Barnawal D, Wasnik K, Tewari SK, Kalra A (2016) Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicompost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Appl Soil Ecol 100:211–225CrossRefGoogle Scholar
  31. Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, Copetta A, D’Agostino G, Massa N, Avidano L, Gamalero E, Berta G (2015) AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25(3):181–193PubMedCrossRefGoogle Scholar
  32. Carpanetto D, Bianchini P (2011). Atlas histórico del mundo. Tikal-Susaeta Eds. Madrid, Spain. ISBN-13: 978-8499281247Google Scholar
  33. Chatterjee IB (1973) Evolution and the biosynthesis of ascorbic acid. Science 182(4118):1271–1272PubMedCrossRefGoogle Scholar
  34. Chauhan H, Bagyaraj DJ, Selvakumar G, Sundaram SP (2015) Novel plant growth promoting rhizobacteria—prospects and potential. Appl Soil Ecol 95:38–53CrossRefGoogle Scholar
  35. Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol, 14(6):277–286Google Scholar
  36. Cirera X, Masset E. Income distribution trends and future food demand. (2010) Philosophical Transactions of the Royal Society B: Biological Sciences 365(1554):2821–34.Google Scholar
  37. Conceição P, Levine S, Lipton M, Warren-Rodríguez A (2016) Toward a food secure future: ensuring food security for sustainable human development in Sub-Saharan Africa. Food Policy 60:1–9CrossRefGoogle Scholar
  38. Cong PT, Dunga TD, Hiena TM, Hien NT, Choudhury AT, Kecskés ML, Kennedy IR (2009) Inoculant plant growth-promoting microorganisms enhance utilisation of urea-N and grain yield of paddy rice in southern Vietnam. Eur J Soil Biol 45:52–61CrossRefGoogle Scholar
  39. Conway G, Barbie E (1988) After the Green Revolution: sustainable and equitable agricultural development. Futures 20:651–670CrossRefGoogle Scholar
  40. Corvalan D, Dubois M, Medana M, Perticari A, Racca R and Ruiz O (2007) Situación actual y perspectivas del mercado de semillas y biofertilizantes en la Argentina. In: Izaguirre-Mayoral M, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. CYTED, BIOFAG, Uruguay. pp 61–67Google Scholar
  41. Cuevas-Rodríguez EO, Yousef GG, García-Saucedo PA, López-Medina J, Paredes-López O, Lila MA (2010) Characterization of anthocyanins and proanthocyanidins in wild and domesticated Mexican blackberries (Rubus spp.) J Agric Food Chem 58(12):7458–7464PubMedCrossRefGoogle Scholar
  42. Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Begollín RA, Megías M, Ollero FJ, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant and Soil 328(1–2):483–493CrossRefGoogle Scholar
  43. Deans SG, Svoboda KP (1990) The antimicrobial properties of marjoram (Origanum majorana L.) volatile oil. Flavour Fragr J 5(3):187–190CrossRefGoogle Scholar
  44. Díez-Méndez A, Menéndez E, García-Fraile P, Celador-Lera L, Rivas R, Mateos PF (2015) Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions. Symbiosis 67:1351–1357CrossRefGoogle Scholar
  45. DiMascio P, Aaiser S, Sies H (1989) Lycopene as the most effective biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538CrossRefGoogle Scholar
  46. Dorais M, Ehret DL, Papadopoulos AP (2008) Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev 7:231–250CrossRefGoogle Scholar
  47. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crc Cr Rev Plant Sci 25(5):417–440CrossRefGoogle Scholar
  48. Dumas Y, Dadomo M, Di Lucca G, Grolier P (2003) Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Agric Food Chem 83(5):369–382CrossRefGoogle Scholar
  49. Dursun A, Ekinci M, Dönmez MF (2010) Effects of foliar application of plant growth promoting bacterium on chemical contents, yield and growth of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.) Pak J Bot 42:3349–3356Google Scholar
  50. Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189CrossRefGoogle Scholar
  51. Estrada-de Los Santos P, Vinuesa P, Martínez-Aguilar L, Hirsch AM, Caballero-Mellado J (2013) Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol. 67:51–60Google Scholar
  52. Estrada-de los Santos P, Rojas-Rojas FU, Tapia-García EY, Vásquez-Murrieta MS & Hirsch AM (2016) To split or not to split: an opinion on dividing the genus Burkholderia. Ann Microbiol. 66:1303–1314Google Scholar
  53. FAOSTAT (2007) United Nations Food and Agriculture Organization, Rome. FAOSTAT. http://faostat.fao.org/default.aspx
  54. Ferreira AS, Pires RR, Rabelo PG, Oliveira RC, Luz JMQ, Brito CH (2013) Implications of Azospirillum brasilense inoculation and nutrient addition on maize in soils of the Brazilian Cerrado under greenhouse and field conditions. App Soil Ecol 72:103–108CrossRefGoogle Scholar
  55. Flores-Félix JD, Ménendez E, Rivera LP, Marcos-García M, Martínez-Molina P, Mateos PF, Velázquez E, García-Fraile P, Rivas R (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 000:1–7Google Scholar
  56. Flores-Félix JD, Silva LR, Rivera LP, Marcos-García M, García-Fraile P, Martínez-Molina E, Mateos PF, Velázquez E, Andrade P, Rivas R (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS One 10(4):e0122281PubMedPubMedCentralCrossRefGoogle Scholar
  57. Garau G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem, 41(1):125–134Google Scholar
  58. García-Fraile P, Robledo M, Ramírez-Bahena M-H, Flores-Félix JD, Fernández MT, Mateos PF, Rivas R, Igual JM, Martínez-Molina E, Peix Á, Velázquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7(5):e38122Google Scholar
  59. García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205CrossRefGoogle Scholar
  60. Garcia-Seco D, Zhang Y, Gutierrez-Mañero FJ, Martin C, Ramos-Solano B (2015) Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One 10(11):e0142639PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gerster H (1997) The potential role of lycopene for human health. J Am Coll Nutr 16(2):109–126PubMedCrossRefGoogle Scholar
  62. Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer I 91(4):317–331CrossRefGoogle Scholar
  63. Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1995) Intake of carotenoids and retino in relation to risk of prostate cancer. J Natl Cancer I 87(23):1767–1776CrossRefGoogle Scholar
  64. Gomez M, Barrett C, Raney T et al (2013) Post-green revolution food systems and the triple burden of malnutrition. Food Policy 42:129–138CrossRefGoogle Scholar
  65. Group FBP, editor (2006) Biofertilizer Manual. Tokyo, Japan: Japan Atomic Industrial Forum.Google Scholar
  66. Gupta AK, Savopoulos CG, Ahuja J, Hatzitolios AI (2011) Role of phytosterols in lipid-lowering: current perspectives. QJM 104(4):301–308PubMedCrossRefGoogle Scholar
  67. Hale L, Luth M, Kenney R, Crowley D (2014) Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Appl Soil Ecol 84:192–199CrossRefGoogle Scholar
  68. Hale L, Luth M, Crowley D (2015) Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biol Biochem 81:228–235CrossRefGoogle Scholar
  69. Hanson AD, Gregory IIIJF (2011) Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol 62:105–125PubMedCrossRefGoogle Scholar
  70. Hassimotto N, Lajolo FM (2011) Antioxidant status in rats after long-term intake of anthocyanins and ellagitannins from blackberries. J Agric Food Chem 91(3):523–531CrossRefGoogle Scholar
  71. Herridge DF, Peoples MB (1990) Ureide assay for measuring nitrogen fixation by nodulated soybean calibrated by 15N methods. Plant Physiol 93:495–503PubMedPubMedCentralCrossRefGoogle Scholar
  72. Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97(20):8859–8873PubMedCrossRefGoogle Scholar
  73. Hummer KE (2010) Rubus pharmacology: antiquity to the present. Hort Sci 45(11):1587–1591Google Scholar
  74. Hungria M and Campo R (2007) Inoculantes Microbianos: Situação no Brasil. In: Izaguirre-Mayoral M, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. Una Denad Internacional, S.A. Montevideo, UruguayGoogle Scholar
  75. Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801CrossRefGoogle Scholar
  76. Imran A, Mirza MS, Shah TM, Malik KA, Hafeez FY (2015) Differential response of kabuli and desi chickpea genotypes toward inoculation with PGPR in different soils. Front Microbiol 6:895CrossRefGoogle Scholar
  77. Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Nakashita H (2010) Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environ 25:58–61PubMedCrossRefGoogle Scholar
  78. Isfahani FM, Besharati H (2012) Effect of biofertilizers on yield and yield components of cucumber. J Biol Earth Sci 2:83–92Google Scholar
  79. Joshi P, Rayalu S, Bansiwal A, Juwarkar AA (2007) Surface modified zeolite, a novel carrier material for Azotobacter chroococcum. Plant and Soil 296(1–2):151–158CrossRefGoogle Scholar
  80. Kamilova F, de Bruyne R (2013) Plant growth promoting microorganisms: the road from an academically promising result to a commercial product. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1-2. Wiley, Hoboken, NJ, pp 677–686CrossRefGoogle Scholar
  81. Kamilova F, Okon Y, de Weert S, Hora K (2015) Commercialization of microbes: manufacturing, inoculation, best practice for objective field testing and registration. In Principles of plant-microbe interactions, Springer I. P. 319-327Google Scholar
  82. Khush G (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822PubMedCrossRefGoogle Scholar
  83. Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?. Science, 341(6147):759–765Google Scholar
  84. Kumar M, Mishra S, Dixit V, Agarwal L, Chauhan PS, Nautiyal CS (2016) Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.) Plant Sign Behave 11(1)Google Scholar
  85. Lattanzio V (2013) Phenolic compounds: introduction. In: Natural Products. Springer, Berlin Heidelberg, pp 1543–1580CrossRefGoogle Scholar
  86. Maheshwari DK, Dubey RC, Agarwal M, Dheeman S, Aeron A, Bajpai VK (2015) Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecol Eng 81:272–277CrossRefGoogle Scholar
  87. Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484CrossRefGoogle Scholar
  88. Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98:6599–6607PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mansotra P, Sharma P, Sharma S (2015) Bioaugmentation of Mesorhizobium cicer, Pseudomonas spp. and Piriformospora indica for Sustainable Chickpea Production. Physiology and Molecular Biology of Plants 21(3):385–393Google Scholar
  91. Marin-Loaiza J C and Cespedes C L (2007) Volatile compounds from plants. Origin, emission, effects, analysis and agro applicationsGoogle Scholar
  92. Martin C, Zhang Y, Tonelli C, Petroni K (2013) Plants, diet, and health. Annu Rev Plant Biol 64:19–46PubMedCrossRefGoogle Scholar
  93. Martínez-Hidalgo P, Galindo-Villardón P, Trujillo ME, Igual JM, Martínez-Molina E (2014a) Micromonospora from nitrogen-fixing nodules of alfalfa (Medicago sativa L.). A new promising plant probiotic bacteria. Sci Rep. 4:6389. DOI: 10.1038/srep06389
  94. Martínez-Hidalgo P, Olivares J, Delgado A, Bedmar E, Martínez-Molina E (2014b) Endophytic Micromonospora from Medicago sativa are apparently not able to fix atmospheric nitrogen. Soil Biol Biochem. 74:201–203Google Scholar
  95. Martínez-Hidalgo P, García JM, Pozo MJ (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol. 6:922. doi: 10.3389/fmicb.2015.00922
  96. Moreno-Gomez B, Rascon-Cruz Q and Aguado-Santacruz G (2012) Manejo y Calidad de los Biofertilizantes. In Aguado-Santacruz G (ed). Introducción al Uso y Manejo de los Biofertilizantes en la Agricultura. INIFAP/SAGARPA, México. pp 115–150Google Scholar
  97. Moreno-Sarmiento N, Moreno-Rodríguez L and Uribe-Vélez D (2007) Biofertilizantes para la Agricultura en Colombia. In: Izaguirre-Mayoral M, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. CYTED, BIOFAG, Uruguay. pp 38–45Google Scholar
  98. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the ß-subclass of Proteobacteria. Lett Nature. 411:948–950Google Scholar
  99. Mulas D, García-Fraile P, Carro L, Ramírez-Bahena M-H, Casquero P, Velázquez E, Gonzalez-Andrés F (2011) Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in Northern Spanish soils: Selection of native strains that replace conventional N fertilization. Soil Biol Biochem 43:2283–2293CrossRefGoogle Scholar
  100. Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J Biol Chem 269(18):13685–13688PubMedGoogle Scholar
  101. Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5(10):1108–1116Google Scholar
  102. Peng J, Richards D, Hartley N, Murphy G et al (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261PubMedCrossRefGoogle Scholar
  103. Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Agric Food Chem 80(7):939–966CrossRefGoogle Scholar
  104. Pingali P (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci U S A 109:12302–12308PubMedPubMedCentralCrossRefGoogle Scholar
  105. Prakamhang J, Tittabutr P, Boonkerd N, Teamtisong K, Uchiumi T, Abe M, Teaumroong N (2015) Proposed some interactions at molecular level of PGPR co-inoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Appl Soil Ecol 85:38–49CrossRefGoogle Scholar
  106. Ramakrishnan K, Selvakumar G (2012) Effect of biofertilizers on enhancement of growth and yield on tomato (Lycopersicum esculentum Mill.) Int J Res Bot 2:20–23Google Scholar
  107. Rao AV, Agarwal S (1998) Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutr Cancer 31(3):199–203PubMedCrossRefGoogle Scholar
  108. Rao AV, Waseem Z, Agarwal S (1998) Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Res Int 31(10):737–741Google Scholar
  109. Rodrigues AC, Vendruscolo CT, da Silveira Moreira A, Santana MVS, de Paula Oliveira JE, Bonifacio A, Figueiredo MADVB (2015) Rhizobium tropici exopolysaccharides as carriers improve the symbiosis of cowpea-Bradyrhizobium-Paenibacillus. Afr J Microbiol Res 9(37):2037–2050CrossRefGoogle Scholar
  110. Romano S, Aujoulat F, Jumas-Bilak E, Masnou A, Jeannot JL, Falsen E, Teyssier C (2009) Multilocus sequence typing supports the hypothesis that Ochrobactrum anthropi displays a human-associated subpopulation. BMC Microbiol, 9(1):1Google Scholar
  111. Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34(1):3–21CrossRefGoogle Scholar
  112. Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49(10):1177–1182PubMedCrossRefGoogle Scholar
  113. Sayer J, Cassman K (2013) Agricultural innovation to protect the environment. Proc Natl Acad Sci U S A 110:8345–8348PubMedPubMedCentralCrossRefGoogle Scholar
  114. Schoebitz M, López MD, Roldán A (2013) Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agron Sustain Dev 33(4):751–765Google Scholar
  115. Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2014) Biosafety of novel bioinoculants. J Biofertil Biopestici. 5(2):1000154. DOI:  10.4172/2155-6202.1000145
  116. Shahzad SM, Arif MS, Riaz M, Iqbal Z, Ashraf M (2013) PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions. Eur J Soil Biol 57:27–34CrossRefGoogle Scholar
  117. Silva LR, Azevedo J, Pereira MJ, Carro L, Velazquez E, Peix A, Valentao P, Andrade PB (2014) Inoculation of the nonlegume Capsicum annuum L. with Rhizobium Strains. II. Changes in sterols, triterpenes, fatty acids, and volatile compounds. J Agric Food Chem 62(3):565–573PubMedCrossRefGoogle Scholar
  118. Skorov G (1973) The green revolution and social progress. World Dev 1:13–21CrossRefGoogle Scholar
  119. Soby S (2013) The end of the green revolution. J Agr Environ Ethic 26:537–546CrossRefGoogle Scholar
  120. Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia, Methods in legume-Rhizobium technology. Springer, New YorkCrossRefGoogle Scholar
  121. Song X, Liu M, Wu D, Griffiths BS, Jiao J, Li H, Hu F (2015) Interaction matters: synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Appl Soil Ecol 89:25–34CrossRefGoogle Scholar
  122. Stahl W, Sies H (1996) Lycopene: a biologically important carotenoid for humans? Arch Biochem Biophys 336(1):1–9PubMedCrossRefGoogle Scholar
  123. Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crops Res, 65(2): 249–258Google Scholar
  124. Suh JS, Jiarong P, Toal PV (2006) Quality control of biofertilizers. Biofert Manual:112–115Google Scholar
  125. Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R (2016) Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.) Int J Curr Microbiol App Sci 5(3):890–901CrossRefGoogle Scholar
  126. Sun D, Hale L, Crowley D (2016) Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier. Biol Fertil Soils 52(4):515–522CrossRefGoogle Scholar
  127. Tahara S (2007) A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci Biotech Bioch 71(6):1387–1404CrossRefGoogle Scholar
  128. Toor RK, Savage GP (2005) Antioxidant activity in different fractions of tomatoes. Food Res Int 38(5):487–494Google Scholar
  129. Trienekens J, Zuurbier P (2008) Quality and safety standards in the food industry, developments and challenges. Int J Prod Econ 113(1):107–122CrossRefGoogle Scholar
  130. Tripathi S, Das A, Chandra A, Varma A (2015) Development of carrier-based formulation of root endophyte Piriformospora indica and its evaluation on Phaseolus vulgaris L. World J Microbiol Biotechnol 31(2):337–344PubMedCrossRefGoogle Scholar
  131. Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludena D, Mateos PF, Martínez-Molina E, Velazquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol. 71:1318–1327Google Scholar
  132. Turan M, Ekinci M, Yildirim E, Günes A, Karagöz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish J Agric Forestry 38(3):327–333CrossRefGoogle Scholar
  133. Vander Gheynst JS, Scher H, Guo HY (2006) Design of formulations for improved biological control agent viability and sequestration during storage. Ind Biotech 2(3):213–219CrossRefGoogle Scholar
  134. Vassilev NM, Vassileva M, Lopez A, Martos V, Reyes A, Maksimovic I, Eichler-Löbermann B, Malusà E (2015) Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol 99:4983–4996PubMedCrossRefGoogle Scholar
  135. Vílchez JI, Navas A, González-López J, Arcos SC, Manzanera M (2016) Biosafety Test for Plant Growth-Promoting Bacteria: Proposed Environmental and Human Safety Index (EHSI) Protocol. Front Microbiol 6:1514. DOI:  10.3389/fmicb.2015.01514
  136. Wani P, Khan M, Zaidi A (2007) Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agronomica Hungarica 55(3):315–323CrossRefGoogle Scholar
  137. Wani PA, Khan MS. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. (2010). Food Chem Toxicol 48:3262–3267Google Scholar
  138. Zachow C, Berg C, Müller H, Meincke R, Komon-Zelazowska M, Druzhinina IS, Berg G (2009) Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J, 3(1):79–92Google Scholar
  139. Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20(9):1288–1294PubMedCrossRefGoogle Scholar
  140. Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetales: current perspective. Sci Hortic 193:231–239CrossRefGoogle Scholar
  141. Zanden J (1991) The first green revolution: the growth of production and productivity in European agriculture, 1870-1914. Econ Hist Rev 44:215–239CrossRefGoogle Scholar
  142. Zúñiga D (2007) Leguminosas y producción de biofertilizantes en el Perú. In: Izaguirre-Mayoral M, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. CYTED, BIOFAG, Uruguay. pp 61–67Google Scholar
  143. Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol. 57:784–788Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Paula García-Fraile
    • 1
    Email author
  • Esther Menéndez
    • 2
    • 3
  • Lorena Celador-Lera
    • 2
    • 3
  • Alexandra Díez-Méndez
    • 2
    • 3
  • Alejandro Jiménez-Gómez
    • 2
    • 3
  • Marta Marcos-García
    • 2
    • 3
  • Xavier Alexis Cruz-González
    • 2
    • 3
  • Pilar Martínez-Hidalgo
    • 4
  • Pedro F. Mateos
    • 2
    • 3
    • 5
  • Raúl Rivas
    • 2
    • 3
    • 5
  1. 1.Institute of Microbiology. Czech Academy of ScienceVestecCzech Republic
  2. 2.Microbiology and Genetics DepartmentDoctores de la Reina SNSalamancaSpain
  3. 3.Spanish-Portuguese Agricultural Research Center (CIALE)VillamayorSpain
  4. 4.Department of Molecular, Cell and Developmental BiologyUniversity of CaliforniaLos AngelesUSA
  5. 5.Unidad Asociada Universidad de Salamanca -CSIC (IRNASA)SalamancaSpain

Personalised recommendations