Development of Nano-Antimicrobial Biomaterials for Biomedical Applications

Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 66)

Abstract

Around the globe, there is a great concern about controlling growth of pathogenic microorganisms for the prevention of infectious diseases. Moreover, the greater incidences of cross contamination and overuse of drugs has contributed towards the development of drug resistant microbial strains making conditions even worse. Hospital acquired infections pose one of the leading complications associated with implantation of any biomaterial after surgery and critical care. In this regard, developing non-conventional antimicrobial agents which would prevent the aforementioned causes is under the quest. The rapid development in nanoscience and nanotechnology has shown promising potential for developing novel biocidal agents that would integrate with a biomaterial to prevent bacterial colonization and biofilm formation. Metals with inherent antimicrobial properties such as silver, copper, zinc at nano scale constitute a special class of antimicrobials which have broad spectrum antimicrobial nature and pose minimum toxicity to humans. Hence, novel biomaterials that inhibit microbial growth would be of great significance to eliminate medical device/instruments associated infections. This chapter comprises the state-of-art advancements in the development of nano-antimicrobial biomaterials for biomedical applications. Several strategies have been targeted to satisfy few important concern such as enhanced long term antimicrobial activity and stability, minimize leaching of antimicrobial material and promote reuse. The proposed strategies to develop new hybrid antimicrobial biomaterials would offer a potent antibacterial solution in healthcare sector such as wound healing applications, tissue scaffolds, medical implants, surgical devices and instruments.

Keywords

Antimicrobial biomaterial Immobilization Nanocomposites Silver nanoparticles Metal nanoparticles Biomedical coatings Surface modification Hydrogel Cytotoxicity Carbon nanotubes Implant Wound healing Tissue scaffold 

List of Abbreviations

2D

Two dimensional

3D

Three dimensional

A549

Human lung adenocarcinoma epithelial cell line

AB

Anti bacterial

AF

Antifungal

AgNP

Silver nanoparticles

AV

Antiviral

BAI

Biomaterial assisted infection

BEAS2B

Human normal bronchial epithelial cells

CACC

Calcium alginate-cotton cellulose

CFU

Colony forming units

CMC

Carboxymethyl chitosan

CNS

Carbon nanoscrolls

CNTs

Carbon nanotubes

CSNPs

Chitosan nanoparticles

CuNPs

Copper nanoparticles

CuO NPs

Copper oxide nanoparticles

DD

Degree of deacetylation

GNPs

Gold nanoparticles

GO

Graphene oxide

HA

Hydroxyapatite

HaCaT

Human keratinocyte

HAIs

Hospital acquired infections

HepG2

Human hepatoma cells

HNC

Hybrid nanocomposite

HNTs

Halloysite nanotubes

IPN

Inter-penetrating network

LBL

Layer-by-layer

MBC

Minimum bactericidal concentration

MDR

Multiple drug resistance

MIC

Minimum inhibitory concentration

MWCNTs

Multiple-walled carbon nanotubes

NCs

Nanocomposites

ND

Not Determined

NIR

Near-Infrared

NSP

Nanosilicate platelets

PTFE

Polytetrafluorethylene

QCS NPs

Quaternary ammonium chitosan derivative nanoparticles

rGO

Reduced grapheme oxide

ROS

Reactive oxygen species

SWCNTs

Single-walled carbon nanotubes

TEM

Transmission electron microscopy

USEPA

US environmental protection agency

VRE

Vancomycin resistant Enterococci

ZnO

Zinc oxide

ZoI

Zone of inhibition

References

  1. Afzal MA, Kalmodia S, Kesarwani P, Basu B, Balani K (2013) Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites. J Biomater Appl 27(8):967–978. doi:10.1177/0885328211431856 CrossRefGoogle Scholar
  2. Aggor FS, Ahmed EM, El-Aref A, Asem M (2010) Synthesis and characterization of poly (Acrylamide-co-Acrylic acid) hydrogel containing silver nanoparticles for antimicrobial applications. J Am Sci 12:6Google Scholar
  3. Agnihotri S, Bajaj G, Mukherji S, Mukherji S (2015) Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale 7(16):7415–7429CrossRefGoogle Scholar
  4. Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2(3):179–188CrossRefGoogle Scholar
  5. Agnihotri S, Mukherji S, Mukherji S (2013) Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale 5(16):7328–7340. doi:10.1039/C3nr00024a CrossRefGoogle Scholar
  6. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4(8):3974–3983CrossRefGoogle Scholar
  7. Ahamed MI, Sankar S, Kashif PM, Basha SK, Sastry TP (2015) Evaluation of biomaterial containing regenerated cellulose and chitosan incorporated with silver nanoparticles. Int J Biol Macromol 72:680–686. doi:10.1016/j.ijbiomac.2014.08.055 CrossRefGoogle Scholar
  8. Ahmad MB, Shameli K, Darroudi M, Yunus W, Ibrahim NA, Hamid AA, Zargar M (2009) Antibacterial activity of silver/clay/chitosan bionanocomposites. Res J Biol Sci 4(11):1156–1161Google Scholar
  9. Ahmad Z, Vargas-Reus MA, Bakhshi R, Ryan F, Ren GG, Oktar F, Allaker RP (2012) Antimicrobial properties of electrically formed elastomeric polyurethane-copper oxide nanocomposites for medical and dental applications. Methods Enzymol 509:87–99. doi:10.1016/b978-0-12-391858-1.00005-8 CrossRefGoogle Scholar
  10. Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S (2011) Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes. J Mater Chem 21(2):387–393CrossRefGoogle Scholar
  11. Allen AB, Priddy LB, Li MT, Guldberg RE (2015) Functional augmentation of naturally-derived materials for tissue regeneration. Ann Biomed Eng 43(3):555–567. doi:10.1007/s10439-014-1192-4 CrossRefGoogle Scholar
  12. Almajhdi FN, Fouad H, Khalil KA, Awad HM, Mohamed SH, Elsarnagawy T, Albarrag AM, Al-Jassir FF, Abdo HS (2014) In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J Mater Sci Mater Med 25(4):1045–1053CrossRefGoogle Scholar
  13. Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Del Rev 59(6):478–490CrossRefGoogle Scholar
  14. Alshehri SM, Aldalbahi A, Al-hajji AB, Chaudhary AA, in het Panhuis M, Alhokbany N, Ahamad T (2016) Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. Carbohydr Polym 138:229–236Google Scholar
  15. Anitha A, Rani VD, Krishna R, Sreeja V, Selvamurugan N, Nair S, Tamura H, Jayakumar R (2009) Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles. Carbohydr Polym 78(4):672–677CrossRefGoogle Scholar
  16. Anjum S, Abbasi BH (2016) Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L. Int J Nanomedicine 11:715CrossRefGoogle Scholar
  17. Anna R, Silvia I, Agnieszka K, Manuel A, Jesus S (2013) Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology 24(1):015101CrossRefGoogle Scholar
  18. Applerot G, Abu-Mukh R, Irzh A, Charmet J, Keppner H, Laux E, Guibert G, Gedanken A (2010) Decorating parylene-coated glass with ZnO nanoparticles for antibacterial applications: a comparative study of sonochemical, microwave, and microwave-plasma coating routes. ACS Appl Mater Interfaces 2(4):1052–1059CrossRefGoogle Scholar
  19. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33(2):139–148CrossRefGoogle Scholar
  20. Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21(3):1–17CrossRefGoogle Scholar
  21. Aydin Sevinç B, Hanley L (2010) Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res Part B Appl Biomater 94(1):22–31Google Scholar
  22. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F (2014) Preparation and properties of poly(vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO–Ag multifunctional nanosized filler. Int J Nanomed 9:1909–1917. doi:10.2147/ijn.s60274 CrossRefGoogle Scholar
  23. Bakare R, Hawthrone S, Vails C, Gugssa A, Karim A, Stubbs J 3rd, Raghavan D (2016) Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film. J Colloid Interface Sci 465:140–148. doi:10.1016/j.jcis.2015.11.041 CrossRefGoogle Scholar
  24. Balakumaran M, Ramachandran R, Balashanmugam P, Mukeshkumar D, Kalaichelvan P (2016) Mycosynthesis of silver and gold nanoparticles: Optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res 182:8–20CrossRefGoogle Scholar
  25. Barbinta-Patrascu ME, Ungureanu C, Iordache SM, Iordache AM, Bunghez IR, Ghiurea M, Badea N, Fierascu RC, Stamatin I (2014) Eco-designed biohybrids based on liposomes, mint-nanosilver and carbon nanotubes for antioxidant and antimicrobial coating. Mater Sci Eng C Mater Biol Appl 39:177–185. doi:10.1016/j.msec.2014.02.038 CrossRefGoogle Scholar
  26. Barreras US, Méndez FT, Martínez REM, Valencia CS, Rodríguez PRM, Rodríguez JPL (2016) Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration. Mater Sci Eng C Mater Biol Appl 58:1182–1187CrossRefGoogle Scholar
  27. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2012) Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol 95(2):299–311CrossRefGoogle Scholar
  28. Blažević F, Milekić T, Romić MD, Juretić M, Pepić I, Filipović-Grčić J, Lovrić J, Hafner A (2016) Nanoparticle-mediated interplay of chitosan and melatonin for improved wound epithelialisation. Carbohydr Polym 146:445–454CrossRefGoogle Scholar
  29. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 48(1):1–12CrossRefGoogle Scholar
  30. Busscher HJ, Van Der Mei HC, Subbiahdoss G, Jutte PC, Van Den Dungen JJ, Zaat SA, Schultz MJ, Grainger DW (2012) Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med 4 (153):153rv110–153rv110Google Scholar
  31. Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: Nanocomposites exhibiting rapid and efficient inhibition of a Multi-Drug Resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21(13):2506–2514CrossRefGoogle Scholar
  32. Çalt S, Serper A (2002) Time-dependent effects of EDTA on dentin structures. J Endod 28(1):17–19CrossRefGoogle Scholar
  33. Campoccia D, Montanaro L, Arciola CR (2013a) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554CrossRefGoogle Scholar
  34. Campoccia D, Montanaro L, Arciola CR (2013b) A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials 34(33):8018–8029CrossRefGoogle Scholar
  35. Cañas AI, Delgado JP, Gartner C (2016) Biocompatible scaffolds composed of chemically crosslinked chitosan and gelatin for tissue engineering. J Appl Polym Sci 133 (33)Google Scholar
  36. Cao X, Tang M, Liu F, Nie Y, Zhao C (2010) Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloids Surf B Biointerfaces 81(2):555–562. doi:10.1016/j.colsurfb.2010.07.057 CrossRefGoogle Scholar
  37. Chan Y-H, Huang C-F, Ou K-L, Peng P-W (2011) Mechanical properties and antibacterial activity of copper doped diamond-like carbon films. Surf Coat Technol 206(6):1037–1040CrossRefGoogle Scholar
  38. Chen Q, Jiang H, Ye H, Li J, Huang J (2014) Preparation, antibacterial, and antioxidant activities of silver/chitosan composites. J Carbohydr Chem 33(6):298–312CrossRefGoogle Scholar
  39. Chen WY, Lin JY, Chen WJ, Luo L, Wei-Guang Diau E, Chen YC (2010) Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomed (Lond) 5(5):755–764. doi:10.2217/nnm.10.43 CrossRefGoogle Scholar
  40. Chen X, Schluesener H (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12CrossRefGoogle Scholar
  41. Chen YN, Hsueh YH, Hsieh CT, Tzou DY, Chang PL (2016) Antiviral activity of Graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res Public Health 13(4). doi:10.3390/ijerph13040430
  42. Cheng L, Weir MD, Xu HH, Antonucci JM, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X (2012) Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater 28(5):561–572. doi:10.1016/j.dental.2012.01.005 CrossRefGoogle Scholar
  43. Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653CrossRefGoogle Scholar
  44. Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59(4):587–590CrossRefGoogle Scholar
  45. Chung Y-C, Wang H-L, Chen Y-M, Li S-L (2003) Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresour Technol 88(3):179–184CrossRefGoogle Scholar
  46. Cioffi N, Ditaranto N, Torsi L, Picca RA, De Giglio E, Sabbatini L, Novello L, Tantillo G, Bleve-Zacheo T, Zambonin PG (2005a) Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films. Anal Bioanal Chem 382(8):1912–1918. doi:10.1007/s00216-005-3334-x CrossRefGoogle Scholar
  47. Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, D’Alessio M, Bleve-Zacheo T, Traversa E (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419CrossRefGoogle Scholar
  48. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005b) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262CrossRefGoogle Scholar
  49. Costerton JW, Stewart PS, Greenberg E (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322CrossRefGoogle Scholar
  50. Curtis L (2008) Prevention of hospital-acquired infections: review of non-pharmacological interventions. J Hosp Infect 69(3):204–219CrossRefGoogle Scholar
  51. Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev 17(5):349–364CrossRefGoogle Scholar
  52. Damm C, Münstedt H, Rösch A (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 42(15):6067–6073CrossRefGoogle Scholar
  53. Dang JM, Leong KW (2006) Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 58(4):487–499. doi:10.1016/j.addr.2006.03.001 CrossRefGoogle Scholar
  54. Das G, Kalita RD, Gogoi P, Buragohain AK, Karak N (2014) Antibacterial activities of copper nanoparticle-decorated organically modified montmorillonite/epoxy nanocomposites. Appl Clay Sci 90:18–26CrossRefGoogle Scholar
  55. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25(14):8192–8199. doi:10.1021/la900585p CrossRefGoogle Scholar
  56. Dash M, Chiellini F, Ottenbrite R, Chiellini E (2011) Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRefGoogle Scholar
  57. de Mel A, Chaloupka K, Malam Y, Darbyshire A, Cousins B, Seifalian AM (2012) A silver nanocomposite biomaterial for blood-contacting implants. J Biomed Mater Res A 100(9):2348–2357. doi:10.1002/jbm.a.34177 Google Scholar
  58. de Paz LEC, Resin A, Howard KA, Sutherland DS, Wejse PL (2011) Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl Environ Microbiol 77(11):3892–3895CrossRefGoogle Scholar
  59. del Carpio-Perochena AE, Bramante CM, Duarte MA, Cavenago BC, Villas-Boas MH, Graeff MS, Bernardineli N, de Andrade FB, Ordinola-Zapata R (2011) Biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin. J Endod 37(8):1134–1138CrossRefGoogle Scholar
  60. Delgado K, Quijada R, Palma R, Palza H (2011) Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett Appl Microbiol 53(1):50–54. doi:10.1111/j.1472-765X.2011.03069.x CrossRefGoogle Scholar
  61. Demurtas M, Perry CC (2014) Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity. Gold Bulletin 47(1–2):103–107CrossRefGoogle Scholar
  62. Dollwet H, Sorenson J (1988) Roles of copper in bone maintenance and healing. Biol Trace Elem Res 18(1):39–48CrossRefGoogle Scholar
  63. Domek MJ, Lechevallier MW, Cameron SC, McFeters GA (1984) Evidence for the role of copper in the injury process of coliform bacteria in drinking water. Appl Environ Microbiol 48(2):289–293Google Scholar
  64. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193CrossRefGoogle Scholar
  65. Dorobantu LS, Goss GG, Burrell RE (2015) Effect of light on physicochemical and biological properties of nanocrystalline silver dressings. RSC Adv 5(19):14294–14304CrossRefGoogle Scholar
  66. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351CrossRefGoogle Scholar
  67. Du WL, Xu YL, Xu ZR, Fan CL (2008) Preparation, characterization and antibacterial properties against E. coli K(88) of chitosan nanoparticle loaded copper ions. Nanotechnology 19(8):085707. doi:10.1088/0957-4484/19/8/085707
  68. Dunn K, Edwards-Jones V (2004) The role of Acticoat™ with nanocrystalline silver in the management of burns. Burns 30:S1–S9CrossRefGoogle Scholar
  69. Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41(6):2256–2282CrossRefGoogle Scholar
  70. Ebrahimiasl S, Zakaria A, Kassim A, Basri SN (2015) Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities. Int J Nanomed 10:217Google Scholar
  71. Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976. doi:10.1128/aem.01658-08 CrossRefGoogle Scholar
  72. El-Naggar MY, Gohar YM, Sorour MA, Waheeb MG (2016) Hydrogel dressing with a nano-Formula against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa diabetic foot bacteria. J Microbiol Biotechnol 26(2):408–420. doi:10.4014/jmb.1506.06048 CrossRefGoogle Scholar
  73. Elbeshehy EK, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 6Google Scholar
  74. Esteban-Tejeda L, Malpartida F, Díaz LA, Torrecillas R, Rojo F, Moya JS (2012) Glass-(nAg, nCu) biocide coatings on ceramic oxide substrates. PLoS ONE 7(3):e33135CrossRefGoogle Scholar
  75. Ewald A, Hosel D, Patel S, Grover LM, Barralet JE, Gbureck U (2011) Silver-doped calcium phosphate cements with antimicrobial activity. Acta Biomater 7(11):4064–4070. doi:10.1016/j.actbio.2011.06.049 CrossRefGoogle Scholar
  76. Fan Z, Liu B, Wang J, Zhang S, Lin Q, Gong P, Ma L, Yang S (2014) A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv Funct Mater 24(25):3933–3943CrossRefGoogle Scholar
  77. Farhoudian S, Yadollahi M, Namazi H (2016) Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int J Biol Macromol 82:837–843CrossRefGoogle Scholar
  78. Fei X, Jia M, Du X, Yang Y, Zhang R, Shao Z, Zhao X, Chen X (2013) Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties. Biomacromolecules 14(12):4483–4488. doi:10.1021/bm4014149 CrossRefGoogle Scholar
  79. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24(11):979–993. doi:10.3109/03639049809089942 CrossRefGoogle Scholar
  80. Fouda MM, El-Aassar MR, Al-Deyab SS (2013) Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydr Polym 92(2):1012–1017. doi:10.1016/j.carbpol.2012.10.047 CrossRefGoogle Scholar
  81. Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8:4303Google Scholar
  82. Gajbhiye S, Sakharwade S (2016) Silver nanoparticles in cosmetics. J Cosmet Dermatol Sci Appl 6(01):48Google Scholar
  83. Gant VA, Wren MW, Rollins MS, Jeanes A, Hickok SS, Hall TJ (2007) Three novel highly charged copper-based biocides: safety and efficacy against healthcare-associated organisms. J Antimicrob Chemother 60(2):294–299CrossRefGoogle Scholar
  84. Geilich BM, Webster TJ (2013) Reduced adhesion of Staphylococcus aureus to ZnO/PVC nanocomposites. In: Bioengineering Conference (NEBEC), 2013 39th Annual Northeast, 2013. IEEE, pp 7–8Google Scholar
  85. Ghanbari H, Radenkovic D, Marashi SM, Parsno S, Roohpour N, Burriesci G, Seifalian AM (2016) Novel heart valve prosthesis with self-endothelialization potential made of modified polyhedral oligomeric silsesquioxane-nanocomposite material. Biointerphases 11(2):029801. doi:10.1116/1.4939036 CrossRefGoogle Scholar
  86. GhavamiNejad A, Park CH, Kim CS (2016) In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules 17(3):1213–1223CrossRefGoogle Scholar
  87. Gnanasangeetha D, Thambavani DS (2013) Biogenic production of zinc oxide nanoparticles using Acalypha Indica. J Chem Bio Phys Sci 4(1):238Google Scholar
  88. Gonzalez-Sanchez MI, Perni S, Tommasi G, Morris NG, Hawkins K, Lopez-Cabarcos E, Prokopovich P (2015) Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C Mater Biol Appl 50:332–340. doi:10.1016/j.msec.2015.02.002 CrossRefGoogle Scholar
  89. Gould SW, Fielder MD, Kelly AF, Morgan M, Kenny J, Naughton DP (2009) The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Ann Microbiol 59(1):151–156CrossRefGoogle Scholar
  90. Grace AN, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloids Surf Physicochem Eng Aspects 297(1):63–70CrossRefGoogle Scholar
  91. Grace M, Chand N, Bajpai SK (2009) Copper alginate-cotton cellulose (CACC) fibers with excellent antibacterial properties. J Eng Fiber Fabr 4(3):1–14Google Scholar
  92. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77(5):1541–1547CrossRefGoogle Scholar
  93. Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237(4822):1588–1595CrossRefGoogle Scholar
  94. Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3(9):1261–1263. doi:10.1021/nl034396z CrossRefGoogle Scholar
  95. Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22(6):693–700CrossRefGoogle Scholar
  96. Gupta A, Silver S (1998) Molecular genetics: silver as a biocide: will resistance become a problem? Nat Biotechnol 16(10):888CrossRefGoogle Scholar
  97. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108CrossRefGoogle Scholar
  98. Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11(7):1034–1043CrossRefGoogle Scholar
  99. Harding JL, Reynolds MM (2014) Combating medical device fouling. Trends Biotechnol 32(3):140–146CrossRefGoogle Scholar
  100. Hassan MS, Amna T, Kim HY, Khil M-S (2013) Enhanced bactericidal effect of novel CuO/TiO2 composite nanorods and a mechanism thereof. Compos B Eng 45(1):904–910CrossRefGoogle Scholar
  101. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017CrossRefGoogle Scholar
  102. Hendriks J, Van Horn J, Van Der Mei H, Busscher H (2004) Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 25(3):545–556CrossRefGoogle Scholar
  103. Herkendell K, Shukla VR, Patel AK, Balani K (2014) Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite. Mater Sci Eng C Mater Biol Appl 34:455–467. doi:10.1016/j.msec.2013.09.034 CrossRefGoogle Scholar
  104. Hill JW (2009) Colloidal silver: medical uses, toxicology and manufacture. Clear Springs PressGoogle Scholar
  105. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Del Rev 64:18–23CrossRefGoogle Scholar
  106. Hoop M, Shen Y, Chen XZ, Mushtaq F, Iuliano LM, Sakar MS, Petruska A, Loessner MJ, Nelson BJ, Pané S (2015) Magnetically driven silver-coated nanocoils for efficient bacterial contact killing. Adv Funct Mater 26(7):1063–1069. doi:10.1002/adfm.201504463 CrossRefGoogle Scholar
  107. Hsu SH, Tseng HJ, Lin YC (2010) The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 31(26):6796–6808. doi:10.1016/j.biomaterials.2010.05.015 CrossRefGoogle Scholar
  108. Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C (2012) Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater 8(2):904–915CrossRefGoogle Scholar
  109. Hu R, Li G, Jiang Y, Zhang Y, Zou JJ, Wang L, Zhang X (2013) Silver-zwitterion organic-inorganic nanocomposite with antimicrobial and antiadhesive capabilities. Langmuir 29(11):3773–3779. doi:10.1021/la304708b CrossRefGoogle Scholar
  110. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323. doi:10.1021/nn101097v CrossRefGoogle Scholar
  111. Huang JF, Zhong J, Chen GP, Lin ZT, Deng Y, Liu YL, Cao PY, Wang B, Wei Y, Wu T, Yuan J, Jiang GB (2016) A hydrogel-based hybrid theranostic contact lens for fungal keratitis. ACS Nano. doi:10.1021/acsnano.6b00601 Google Scholar
  112. Huang WC, Tsai PJ, Chen YC (2007) Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomed (Lond) 2(6):777–787. doi:10.2217/17435889.2.6.777 CrossRefGoogle Scholar
  113. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910CrossRefGoogle Scholar
  114. Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnol (N Y) 13(6):565–576CrossRefGoogle Scholar
  115. Ifuku S, Tsukiyama Y, Yukawa T, Egusa M, Kaminaka H, Izawa H, Morimoto M, Saimoto H (2015) Facile preparation of silver nanoparticles immobilized on chitin nanofiber surfaces to endow antifungal activities. Carbohydr Polym 117:813–817. doi:10.1016/j.carbpol.2014.10.042 CrossRefGoogle Scholar
  116. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4(2):141–144CrossRefGoogle Scholar
  117. Jamil B, Habib H, Abbasi S, Nasir H, Rahman A, Rehman A, Bokhari H, Imran M (2016) Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens. Carbohydr Polym 136:682–691CrossRefGoogle Scholar
  118. Jayakumar R, Menon D, Manzoor K, Nair S, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr Polym 82(2):227–232CrossRefGoogle Scholar
  119. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Raju KM (2013) Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohydr Polym 92(2):2193–2200CrossRefGoogle Scholar
  120. Johnsson B, Lofas S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198(2):268–277CrossRefGoogle Scholar
  121. Jones V, Grey JE, Harding KG (2006) Wound dressings. BMJ 332(7544):777–780. doi:10.1136/bmj.332.7544.777 CrossRefGoogle Scholar
  122. Jones V, Milton T (2000) When and how to use hydrogels. Nurs Times 96(23):3–4Google Scholar
  123. Jovašević J, Dimitrijević S, Filipović J, Tomić SLj MM (2011) Swelling, mechanical and antimicrobial studies of Ag/P (HEMA/IA)/PVP semi-IPN hybrid hydrogels. Acta Phys Pol A 2:279–283Google Scholar
  124. Jukes L, Mikhail J, Bome-Mannathoko N, Hadfield SJ, Harris LG, El-Bouri K, Davies AP, Mack D (2010) Rapid differentiation of Staphylococcus aureus, Staphylococcus epidermidis and other coagulase-negative staphylococci and methicillin susceptibility testing directly from growth-positive blood cultures by multiplex real-time PCR. J Med Microbiol 59(12):1456–1461CrossRefGoogle Scholar
  125. Kamrupi I, Phukon P, Konwer B, Dolui S (2011) Synthesis of silver–polystyrene nanocomposite particles using water in supercritical carbon dioxide medium and its antimicrobial activity. J Supercrit Fluids 55(3):1089–1094CrossRefGoogle Scholar
  126. Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413. doi:10.1021/la800951v CrossRefGoogle Scholar
  127. Kannan RY, Salacinski HJ, De Groot J, Clatworthy I, Bozec L, Horton M, Butler PE, Seifalian AM (2006) The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite. Biomacromolecules 7(1):215–223. doi:10.1021/bm050590z CrossRefGoogle Scholar
  128. Kar S, Bagchi B, Kundu B, Bhandary S, Basu R, Nandy P, Das S (2014) Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications. Biochimica et Biophysica Acta (BBA)-General Subjects 1840(11):3264–3276Google Scholar
  129. Khalil KA, Fouad H, Elsarnagawy T, Almajhdi FN (2013) Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int J Electrochem Sci 8:3483–3493Google Scholar
  130. Kim J, Lee J, Kwon S, Jeong S (2009) Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. J Nanosci Nanotechnol 9(2):1098–1102CrossRefGoogle Scholar
  131. Kishen A, Sum C-P, Mathew S, Lim C-T (2008) Influence of irrigation regimens on the adherence of Enterococcus faecalis to root canal dentin. J Endod 34(7):850–854CrossRefGoogle Scholar
  132. Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7(4):2833–2881CrossRefGoogle Scholar
  133. Krupanidhi S, Sreekumar A, Sanjeevi C (2008) Copper & biological health. Indian J Med Res 128(4):448Google Scholar
  134. Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7(3):236–241CrossRefGoogle Scholar
  135. Lavorgna M, Attianese I, Buonocore GG, Conte A, Del Nobile MA, Tescione F, Amendola E (2014) MMT-supported Ag nanoparticles for chitosan nanocomposites: structural properties and antibacterial activity. Carbohydr Polym 102:385–392. doi:10.1016/j.carbpol.2013.11.026 CrossRefGoogle Scholar
  136. Lee B-S, Lee C-C, Wang Y-P, Chen H-J, Lai C-H, Hsieh W-L, Chen Y-W (2016a) Controlled-release of tetracycline and lovastatin by poly (d, l-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs. Int J Nanomed 11:285CrossRefGoogle Scholar
  137. Lee J-H, Velmurugan P, Park J-H, Lee K-J, Jin J-S, Park Y-J, Bang K-S, Oh B-T (2016b) In vitro fabrication of dental filling nanopowder by green route and its antibacterial activity against dental pathogens. J Photochem Photobiol B: Biol 159:229–236CrossRefGoogle Scholar
  138. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880CrossRefGoogle Scholar
  139. Li C, Wang X, Chen F, Zhang C, Zhi X, Wang K, Cui D (2013) The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials 34(15):3882–3890. doi:10.1016/j.biomaterials.2013.02.001 CrossRefGoogle Scholar
  140. Li J, Zhai D, Lv F, Yu Q, Ma H, Yin J, Yi Z, Liu M, Chang J, Wu C (2016) Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater 36:254–266CrossRefGoogle Scholar
  141. Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46(10):5378–5386CrossRefGoogle Scholar
  142. Li Z, Lee D, Sheng X, Cohen RE, Rubner MF (2006) Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 22(24):9820–9823. doi:10.1021/la0622166 CrossRefGoogle Scholar
  143. Lin JJ, Lin WC, Li SD, Lin CY, Hsu SH (2013) Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS Appl Mater Interfaces 5(2):433–443. doi:10.1021/am302534k CrossRefGoogle Scholar
  144. Liu X, Mou Y, Wu S, Man H (2013) Synthesis of silver-incorporated hydroxyapatite nanocomposites for antimicrobial implant coatings. Appl Surf Sci 273:748–757CrossRefGoogle Scholar
  145. Liu Y, Kim H-I (2012) Characterization and antibacterial properties of genipin-crosslinked chitosan/poly (ethylene glycol)/ZnO/Ag nanocomposites. Carbohydr Polym 89(1):111–116CrossRefGoogle Scholar
  146. Longano D, Ditaranto N, Cioffi N, Di Niso F, Sibillano T, Ancona A, Conte A, Del Nobile M, Sabbatini L, Torsi L (2012a) Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal Bioanal Chem 403(4):1179–1186CrossRefGoogle Scholar
  147. Longano D, Ditaranto N, Sabbatini L, Torsi L, Cioffi N (2012b) Synthesis and antimicrobial activity of copper nanomaterials. In: Cioffi N, Rai M (eds) Nano-antimicrobials: progress and prospects. Springer, Berlin, Heidelberg, pp 85–117. doi:10.1007/978-3-642-24428-5_3
  148. Loo CY, Young PM, Lee WH, Cavaliere R, Whitchurch CB, Rohanizadeh R (2014) Non-cytotoxic silver nanoparticle-polyvinyl alcohol hydrogels with anti-biofilm activity: designed as coatings for endotracheal tube materials. Biofouling 30(7):773–788. doi:10.1080/08927014.2014.926475 CrossRefGoogle Scholar
  149. Lu L, Sun R, Chen R, Hui C-K, Ho C-M, Luk JM, Lau G, Che C-M (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Ther 13(2):253Google Scholar
  150. Luong ND, Lee Y, Nam J-D (2008) Highly-loaded silver nanoparticles in ultrafine cellulose acetate nanofibrillar aerogel. Eur Polym J 44(10):3116–3121CrossRefGoogle Scholar
  151. Ma Y-Q, Yi J-Z, Zhang L-M (2009) A facile approach to incorporate silver nanoparticles into dextran-based hydrogels for antibacterial and catalytical application. J Macromol Sci‚ Pure Appl Chem 46(6):643–648Google Scholar
  152. Maathuis PG, Neut D, Busscher HJ, van der Mei HC, van Horn JR (2005) Perioperative contamination in primary total hip arthroplasty. Clin Orthop Relat Res 433:136–139CrossRefGoogle Scholar
  153. Mack D, Davies AP, Harris LG, Jeeves R, Pascoe B, Knobloch JK-M, Rohde H, Wilkinson TS (2013) Staphylococcus epidermidis in biomaterial-associated infections. In: Moriarty FT, Sebastian ZAJ, Busscher HJ (eds) Biomaterials associated infection: Immunological aspects and antimicrobial strategies. Springer, New York, pp 25–56. doi:10.1007/978-1-4614-1031-7
  154. Mandal A, Meda V, Zhang WJ, Farhan KM, Gnanamani A (2012) Synthesis, characterization and comparison of antimicrobial activity of PEG/TritonX-100 capped silver nanoparticles on collagen scaffold. Colloids Surf B Biointerfaces 90:191–196. doi:10.1016/j.colsurfb.2011.10.021 CrossRefGoogle Scholar
  155. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51CrossRefGoogle Scholar
  156. Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Del Rev 62(1):12–27CrossRefGoogle Scholar
  157. Marsh P (2004) Dental plaque as a microbial biofilm. Caries Res 38(3):204–211CrossRefGoogle Scholar
  158. Marsh P (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(s6):7–15CrossRefGoogle Scholar
  159. Marsich E, Travan A, Donati I, Di Luca A, Benincasa M, Crosera M, Paoletti S (2011) Biological response of hydrogels embedding gold nanoparticles. Colloids Surf B Biointerfaces 83(2):331–339CrossRefGoogle Scholar
  160. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859CrossRefGoogle Scholar
  161. Mohan R, Shanmugharaj AM, Sung Hun R (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B Appl Biomater 96(1):119–126. doi:10.1002/jbm.b.31747 CrossRefGoogle Scholar
  162. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34(2):103–110CrossRefGoogle Scholar
  163. Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M (2013) Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett 8(1):93. doi:10.1186/1556-276x-8-93 CrossRefGoogle Scholar
  164. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346CrossRefGoogle Scholar
  165. MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 85(2):360–365CrossRefGoogle Scholar
  166. Mukherji S, Ruparelia J, Agnihotri S (2012) Antimicrobial activity of silver and copper nanoparticles: variation in sensitivity across various strains of bacteria and fungi. In: Cioffi N, Rai M (eds) Nano-Antimicrobials: Progress and Prospects. Springer, Berlin, Heidelberg, pp 225–251CrossRefGoogle Scholar
  167. Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37(2):281–339. doi:10.1016/j.progpolymsci.2011.08.005 CrossRefGoogle Scholar
  168. Murthy PK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM (2008) First successful design of semi-IPN hydrogel–silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318(2):217–224CrossRefGoogle Scholar
  169. Murugan E, Vimala G (2011) Effective functionalization of multiwalled carbon nanotube with amphiphilic poly(propyleneimine) dendrimer carrying silver nanoparticles for better dispersability and antimicrobial activity. J Colloid Interface Sci 357(2):354–365. doi:10.1016/j.jcis.2011.02.009 CrossRefGoogle Scholar
  170. Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules 8(9):2762–2767. doi:10.1021/bm700446p CrossRefGoogle Scholar
  171. Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed Nanotechnol Biol Med 5(4):452–456CrossRefGoogle Scholar
  172. Narayan R, Abernathy H, Riester L, Berry C, Brigmon R (2005) Antimicrobial properties of diamond-like carbon-silver-platinum nanocomposite thin films. J Mater Eng Perform 14(4):435–440CrossRefGoogle Scholar
  173. Narayanan P, Wilson WS, Abraham AT, Sevanan M (2012) Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens. BioNanoScience 2(4):329–335CrossRefGoogle Scholar
  174. Naveena BE, Prakash S (2013) Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J Pharm Clin Res 6:179–182Google Scholar
  175. Norowski PA, Bumgardner JD (2009) Biomaterial and antibiotic strategies for peri-implantitis: A review. J Biomed Mater Res Part B Appl Biomater 88(2):530–543CrossRefGoogle Scholar
  176. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720CrossRefGoogle Scholar
  177. Panacek A, Kilianova M, Prucek R, Husickova V, Vecerova R, Kolar M, Kvitek L, Zboril R (2014) Preparation and in vitro bactericidal and fungicidal efficiency of nanosilver/methylcellulose hydrogel. Int J Chem Mol Nucl Mater Metall Eng 8(6):493–498Google Scholar
  178. Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, Hamal P, Zbořil R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31):6333–6340. doi:10.1016/j.biomaterials.2009.07.065 CrossRefGoogle Scholar
  179. Panáček A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Tj Nevečná, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253CrossRefGoogle Scholar
  180. Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Ann Rev Microbiol 57(1):677–701CrossRefGoogle Scholar
  181. Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Del Rev 65(13):1803–1815CrossRefGoogle Scholar
  182. Peng S, Jin G, Li L, Li K, Srinivasan M, Ramakrishna S, Chen J (2016) Multi-functional electrospun nanofibers for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem Soc RevGoogle Scholar
  183. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRefGoogle Scholar
  184. Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64(4):323–334CrossRefGoogle Scholar
  185. Pinto RJ, Marques PA, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5(6):2279–2289. doi:10.1016/j.actbio.2009.02.003 CrossRefGoogle Scholar
  186. Pishbin F, Mourino V, Gilchrist JB, McComb DW, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2013) Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater 9(7):7469–7479. doi:10.1016/j.actbio.2013.03.006 CrossRefGoogle Scholar
  187. Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8(6):457–470CrossRefGoogle Scholar
  188. Prema P, Iniya P, Immanuel G (2016) Microbial mediated synthesis, characterization, antibacterial and synergistic effect of gold nanoparticles using Klebsiella pneumoniae (MTCC-4030). RSC Adv 6(6):4601–4607CrossRefGoogle Scholar
  189. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700CrossRefGoogle Scholar
  190. Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465CrossRefGoogle Scholar
  191. Raghavendra GM, Jayaramudu T, Varaprasad K, Sadiku R, Ray SS, Raju KM (2013) Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds. Carbohydr Polym 93(2):553–560CrossRefGoogle Scholar
  192. Raghunath J, Zhang H, Edirisinghe MJ, Darbyshire A, Butler PE, Seifalian AM (2009) A new biodegradable nanocomposite based on polyhedral oligomeric silsesquioxane nanocages: cytocompatibility and investigation into electrohydrodynamic jet fabrication techniques for tissue-engineered scaffolds. Biotechnol Appl Biochem 52(1):1–8. doi:10.1042/ba20070256
  193. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028CrossRefGoogle Scholar
  194. Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20(32):6789–6798CrossRefGoogle Scholar
  195. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83CrossRefGoogle Scholar
  196. Ramamurthy C, Padma M, Mareeswaran R, Suyavaran A, Kumar MS, Premkumar K, Thirunavukkarasu C (2013) The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf B Biointerfaces 102:808–815CrossRefGoogle Scholar
  197. Rangari VK, Mohammad GM, Jeelani S, Hundley A, Vig K, Singh SR, Pillai S (2010) Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their nylon-6 polymer nanocomposite fibers for antimicrobial applications. Nanotechnology 21(9):095102. doi:10.1088/0957-4484/21/9/095102 CrossRefGoogle Scholar
  198. Rao KK, Reddy PR, Lee Y-I, Kim C (2012) Synthesis and characterization of chitosan–PEG–Ag nanocomposites for antimicrobial application. Carbohydr Polym 87(1):920–925CrossRefGoogle Scholar
  199. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Academic Press, CambridgeGoogle Scholar
  200. Regiel-Futyra A, Kus-Liskiewicz M, Sebastian V, Irusta S, Arruebo M, Stochel G, Kyziol A (2015) Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl Mater Interfaces 7(2):1087–1099. doi:10.1021/am508094e CrossRefGoogle Scholar
  201. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590CrossRefGoogle Scholar
  202. Rodrigues AG, Ping LY, Marcato PD, Alves OL, Silva MC, Ruiz RC, Melo IS, Tasic L, De Souza AO (2013) Biogenic antimicrobial silver nanoparticles produced by fungi. Appl Microbiol Biotechnol 97(2):775–782CrossRefGoogle Scholar
  203. Rodríguez-Tobías H, Morales G, Ledezma A, Romero J, Grande D (2014) Novel antibacterial electrospun mats based on poly (D, L-lactide) nanofibers and zinc oxide nanoparticles. J Mater Sci 49(24):8373–8385CrossRefGoogle Scholar
  204. Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3(4):129–133CrossRefGoogle Scholar
  205. Romainor ANB, Chin SF, Pang SC, Bilung LM (2014) Preparation and characterization of chitosan nanoparticles-doped cellulose films with antimicrobial property. J Nanomater 2014:130CrossRefGoogle Scholar
  206. Rosemary MJ, MacLaren I, Pradeep T (2006) Investigations of the antibacterial properties of ciprofloxacin@SiO2. Langmuir 22(24):10125–10129. doi:10.1021/la061411h CrossRefGoogle Scholar
  207. Rujitanaroj P-O, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49(21):4723–4732CrossRefGoogle Scholar
  208. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716CrossRefGoogle Scholar
  209. Rusen E, Mocanu A, Nistor LC, Dinescu A, Calinescu I, Mustatea G, Voicu SI, Andronescu C, Diacon A (2014) Design of antimicrobial membrane based on polymer colloids/multiwall carbon nanotubes hybrid material with silver nanoparticles. ACS Appl Mater Interfaces 6(20):17384–17393. doi:10.1021/am505024p CrossRefGoogle Scholar
  210. Russell A, Path F, Sl FP, Hugo W (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351CrossRefGoogle Scholar
  211. Sacco P, Travan A, Borgogna M, Paoletti S, Marsich E (2015) Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. J Mater Sci Mater Med 26(3):128. doi:10.1007/s10856-015-5474-7 CrossRefGoogle Scholar
  212. Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol 305(1):85–95CrossRefGoogle Scholar
  213. Salwiczek M, Qu Y, Gardiner J, Strugnell RA, Lithgow T, McLean KM, Thissen H (2014) Emerging rules for effective antimicrobial coatings. Trends Biotechnol 32(2):82–90CrossRefGoogle Scholar
  214. Sandri G, Bonferoni MC, Ferrari F, Rossi S, Aguzzi C, Mori M, Grisoli P, Cerezo P, Tenci M, Viseras C, Caramella C (2014) Montmorillonite-chitosan-silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydr Polym 102:970–977. doi:10.1016/j.carbpol.2013.10.029 CrossRefGoogle Scholar
  215. Sastri VR (2013) Materials used in medical devices. In: Sastri V R (eds), Plastics in medical devices: properties, requirements, and applications. William Andrew Publishing, Oxford, pp 19–31. doi:10.1016/B978-1-4557-3201-2.00003-3
  216. Sawant SN, Selvaraj V, Prabhawathi V, Doble M (2013) Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. PLoS ONE 8(5):e63311. doi:10.1371/journal.pone.0063311 CrossRefGoogle Scholar
  217. Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11CrossRefGoogle Scholar
  218. Schwartz VB, Thétiot F, Ritz S, Pütz S, Choritz L, Lappas A, Förch R, Landfester K, Jonas U (2012) Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly (n-isopropylacrylamide) hydrogel surface layers. Adv Funct Mater 22(11):2376–2386CrossRefGoogle Scholar
  219. Selvaraj V, Alagar M (2007) Analytical detection and biological assay of antileukemic drug 5-fluorouracil using gold nanoparticles as probe. Int J Pharm 337(1–2):275–281. doi:10.1016/j.ijpharm.2006.12.027 CrossRefGoogle Scholar
  220. Seo Y, Hwang J, Kim J, Jeong Y, Hwang MP, Choi J (2014) Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int J Nanomed 9:4621–4629. doi:10.2147/ijn.s69561 Google Scholar
  221. Shalumon K, Anulekha K, Nair SV, Nair S, Chennazhi K, Jayakumar R (2011) Sodium alginate/poly (vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 49(3):247–254CrossRefGoogle Scholar
  222. Shameli K, Ahmad MB, Yunus WM, Ibrahim NA, Rahman RA, Jokar M, Darroudi M (2010) Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomed 5:573–579CrossRefGoogle Scholar
  223. Shameli K, Bin Ahmad M, Zargar M, Yunus WM, Ibrahim NA, Shabanzadeh P, Moghaddam MG (2011) Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int J Nanomed 6:271–284. doi:10.2147/ijn.s16043 CrossRefGoogle Scholar
  224. Shanthi S, Jayaseelan BD, Velusamy P, Vijayakumar S, Chih CT, Vaseeharan B (2016) Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb PathogGoogle Scholar
  225. Sharma D, Rajput J, Kaith B, Kaur M, Sharma S (2010) Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 519(3):1224–1229CrossRefGoogle Scholar
  226. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf 145(1):83–96CrossRefGoogle Scholar
  227. Sheikh FA, Kanjwal MA, Saran S, Chung W-J, Kim H (2011) Polyurethane nanofibers containing copper nanoparticles as future materials. Appl Surf Sci 257(7):3020–3026CrossRefGoogle Scholar
  228. Shi Z, Neoh K, Kang E, Wang W (2006) Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27(11):2440–2449CrossRefGoogle Scholar
  229. Siegel JD, Rhinehart E, Jackson M, Chiarello L (2007) 2007 guideline for isolation precautions: preventing transmission of infectious agents in health care settings. Am J Infect Control 35(10):S65–S164CrossRefGoogle Scholar
  230. Simon T, Wu C-S, Liang J-C, Cheng C, Ko F-H (2016) Facile synthesis of a biocompatible silver nanoparticle derived tripeptide supramolecular hydrogel for antibacterial wound dressings. New J ChemGoogle Scholar
  231. Singh M, Singh S, Prasad S, Gambhir I (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Biostruct 3(3):115–122Google Scholar
  232. Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65(4):430–434CrossRefGoogle Scholar
  233. Song J, Kim H, Jang Y, Jang J (2013) Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles. ACS Appl Mater Interfaces 5(22):11563–11568. doi:10.1021/am402310u CrossRefGoogle Scholar
  234. Speshock JL, Murdock RC, Braydich-Stolle LK, Schrand AM, Hussain SM (2010) Interaction of silver nanoparticles with Tacaribe virus. J Nanobiotechnol 8(1):19CrossRefGoogle Scholar
  235. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138CrossRefGoogle Scholar
  236. Stickler DJ (2000) Biomaterials to prevent nosocomial infections: is silver the gold standard? Curr Opin Infect Dis 13(4):389–393CrossRefGoogle Scholar
  237. Stoecklin-Wasmer C, Rutjes A, Da Costa B, Salvi G, Jüni P, Sculean A (2013) Absorbable collagen membranes for periodontal regeneration: A systematic review. J Dent Res 92(9):773–781CrossRefGoogle Scholar
  238. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686CrossRefGoogle Scholar
  239. Subbiahdoss G, da Silva Domingues JF, Kuijer R, van der Mei HC, Busscher HJ (2013) Bridging the gap between in vitro and in vivo evaluation of biomaterial-associated infections. SpringerGoogle Scholar
  240. Sudarshan N, Hoover D, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6(3):257–272CrossRefGoogle Scholar
  241. Sudheesh Kumar P, Lakshmanan V-K, Anilkumar T, Ramya C, Reshmi P, Unnikrishnan A, Nair SV, Jayakumar R (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 4(5):2618–2629CrossRefGoogle Scholar
  242. Sun L, Du Y, Fan L, Chen X, Yang J (2006) Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer 47(6):1796–1804CrossRefGoogle Scholar
  243. Tavaria FK, Costa EM, Gens EJ, Malcata FX, Pintado ME (2013) Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol 40(12):1014–1019CrossRefGoogle Scholar
  244. Tian T, Shi X, Cheng L, Luo Y, Dong Z, Gong H, Xu L, Zhong Z, Peng R, Liu Z (2014) Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl Mater Interfaces 6(11):8542–8548. doi:10.1021/am5022914 CrossRefGoogle Scholar
  245. Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S (2009) Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 10(6):1429–1435. doi:10.1021/bm900039x CrossRefGoogle Scholar
  246. Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK (2014) Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21(1):433–447CrossRefGoogle Scholar
  247. Usman SM (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 8:4467–4479Google Scholar
  248. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS (2015) Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780. doi:10.3762/bjnano.6.181 CrossRefGoogle Scholar
  249. Varaprasad K, Mohan YM, Ravindra S, Reddy NN, Vimala K, Monika K, Sreedhar B, Raju KM (2010) Hydrogel–silver nanoparticle composites: A new generation of antimicrobials. J Appl Polym Sci 115(2):1199–1207CrossRefGoogle Scholar
  250. Vargas-Villagran H, Romo-Uribe A, Teran-Salgado E, Dominguez-Diaz M, Flores A (2014) Electrospun polylactic acid non-woven mats incorporating silver nanoparticles. Polym Bull 71(9):2437–2452. doi:10.1007/s00289-014-1200-8 CrossRefGoogle Scholar
  251. Vigneshwaran N, Kumar S, Kathe A, Varadarajan P, Prasad V (2006) Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 17(20):5087CrossRefGoogle Scholar
  252. Vijayakumar PS, Prasad BL (2009) Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents. Langmuir 25(19):11741–11747. doi:10.1021/la901024p CrossRefGoogle Scholar
  253. Vimala K, Yallapu MM, Varaprasad K, Reddy NN, Ravindra S, Naidu NS, Raju KM (2011) Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J Biomater Nanobiotechnol 2(01):55CrossRefGoogle Scholar
  254. Vlad S, Tanase C, Macocinschi D, Ciobanu C, Balaes T, Filip D, Gostin I, Gradinaru L (2012) Antifungal behaviour of polyurethane membranes with zinc oxide nanoparticles. Dig J Nanomater Bios 7:51–58Google Scholar
  255. Wang N, Hu B, Chen ML, Wang JH (2015) Polyethylenimine mediated silver nanoparticle-decorated magnetic graphene as a promising photothermal antibacterial agent. Nanotechnology 26(19):195703. doi:10.1088/0957-4484/26/19/195703 CrossRefGoogle Scholar
  256. Wang Z, Liu S, Ma J, Qu G, Wang X, Yu S, He J, Liu J, Xia T, Jiang GB (2013) Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in erythroid progenitor cells. ACS Nano 7(5):4171–4186. doi:10.1021/nn400594s CrossRefGoogle Scholar
  257. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys: Condens Matter 16(25):R829Google Scholar
  258. Wei Y, Chen S, Kowalczyk B, Huda S, Gray TP, Grzybowski BA (2010) Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J Phys Chem C 114(37):15612–15616CrossRefGoogle Scholar
  259. Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2(2):182–193CrossRefGoogle Scholar
  260. Xu J, Ji W, Shen Z, Tang S, Ye X, Jia D, Xin X (1999) Preparation and characterization of CuO nanocrystals. J Solid State Chem 147(2):516–519CrossRefGoogle Scholar
  261. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int J Biol Macromol 73:109–114CrossRefGoogle Scholar
  262. Yallappa S, Manjanna J, Dhananjaya B, Vishwanatha U, Ravishankar B, Gururaj H, Niranjana P, Hungund B (2015) Phytochemically functionalized Cu and Ag nanoparticles embedded in MWCNTs for enhanced antimicrobial and anticancer properties. Nano-Micro Lett 1–11Google Scholar
  263. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3(7):643–646CrossRefGoogle Scholar
  264. Yien L, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J BiomaterGoogle Scholar
  265. Yu B, Leung KM, Guo Q, Lau WM, Yang J (2011) Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22(11):115603CrossRefGoogle Scholar
  266. Yu L, Zhang Y, Zhang B, Liu J (2014) Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure. Sci Rep 4:4551. doi:10.1038/srep04551 Google Scholar
  267. Zaat S, Broekhuizen C, Riool M (2010) Host tissue as a niche for biomaterial-associated infection. Future Microbiol 5(8):1149–1151CrossRefGoogle Scholar
  268. Zahran MK, Ahmed HB, El-Rafie MH (2014) Surface modification of cotton fabrics for antibacterial application by coating with AgNPs-alginate composite. Carbohydr Polym 108:145–152. doi:10.1016/j.carbpol.2014.03.005 CrossRefGoogle Scholar
  269. Zaporojtchenko V, Podschun R, Schürmann U, Kulkarni A, Faupel F (2006) Physico-chemical and antimicrobial properties of co-sputtered Ag–Au/PTFE nanocomposite coatings. Nanotechnology 17(19):4904CrossRefGoogle Scholar
  270. Zeng F, Hou C, Wu S, Liu X, Tong Z, Yu S (2007) Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnology 18(5):055605CrossRefGoogle Scholar
  271. Zhang H, Wu M, Sen A (2012a) Silver nanoparticle antimicrobials and related materials. In: Cioffi N, Rai M (eds) Nano-antimicrobials: progress and prospects. Springer, Berlin, Heidelberg, pp 3–45. doi:10.1007/978-3-642-24428-5
  272. Zhang K, Kim YK, Cadenaro M, Bryan TE, Sidow SJ, Loushine RJ, J-q Ling, Pashley DH, Tay FR (2010) Effects of different exposure times and concentrations of sodium hypochlorite/ethylenediaminetetraacetic acid on the structural integrity of mineralized dentin. J Endod 36(1):105–109CrossRefGoogle Scholar
  273. Zhang R, Xue M, Yang J, Tan T (2012b) A novel injectable and in situ crosslinked hydrogel based on hyaluronic acid and α, β-polyaspartylhydrazide. J Appl Polym Sci 125(2):1116–1126CrossRefGoogle Scholar
  274. Zheng Y, Cai C, Zhang F, Monty J, Linhardt RJ, Simmons TJ (2016) Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology 27(5):055102CrossRefGoogle Scholar
  275. Zhou B, Li Y, Deng H, Hu Y, Li B (2014) Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids Surf B Biointerfaces 116:432–438. doi:10.1016/j.colsurfb.2014.01.016 CrossRefGoogle Scholar
  276. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia

Personalised recommendations