Pluripotent Stem Cells and Skeletal Muscle Differentiation: Challenges and Immediate Applications

  • Elena Garreta
  • Andrés Marco
  • Cristina Eguizábal
  • Carolina Tarantino
  • Mireia Samitier
  • Maider Badiola
  • Joaquín Gutiérrez
  • Josep Samitier
  • Nuria MontserratEmail author


Recent advances in the generation of skeletal muscle derivatives from pluripotent stem cells (PSCs) provide innovative tools for muscle development, disease modeling, and cell replacement therapies. Here, we revise major relevant findings that have contributed to these advances in the field, by the revision of how early findings using mouse embryonic stem cells (ESCs) set the bases for the derivation of skeletal muscle cells from human pluripotent stem cells (hPSCs) and patient-derived human-induced pluripotent stem cells (hiPSCs) to the use of genome editing platforms allowing for disease modeling in the petri dish.


Pluripotent stem cells Differentiation Genome editing Disease modeling 



E.G. was partially supported by La Fundació Privada La Marató de TV3, 121430/31/32, and Spanish Ministry of Economy and Competitiveness-MINECO (SAF2014-59778). M.B. and J.S. has been financially supported by the Commission for Universities and Research of the Department of Innovation, Universities, and Enterprise of the Generalitat de Catalunya (2014 SGR 1442) and developed in the context of ADVANCE(CAT) with the support of ACCIÓ (Catalonia Trade & Investment; Generalitat de Catalunya) and the European Community under the Catalonian ERDF operational program (European Regional Development Fund) 2014–2020. This work also was partially supported by the project MINDS (TEC2015-70104-P), awarded by the Spanish Ministry of Economy and Competitiveness. N.M. was partially supported by StG-2014-640525_REGMAMKID, La Fundació Privada La Marató de TV3 (121430/31/32), MINECO SAF2014-59778, and the Spanish Ministry of Science and Innovation (PLE 2009-147), RYC-2014-16242, and 2014 SGR 1442.




  1. 1.
    Daar AS, Greenwood HL (2007) A proposed definition of regenerative medicine. J Tissue Eng Regen Med 1:179–184. doi: 10.1002/term.20 PubMedCrossRefGoogle Scholar
  2. 2.
    Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332:459–461. doi: 10.1038/332459a0 PubMedCrossRefGoogle Scholar
  3. 3.
    Liebaers I, Van de Velde H, Cauffman G, Tournaye H, Devroey P (2008) The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod 23:1742–1747. doi: 10.1093/humrep/den190 PubMedCrossRefGoogle Scholar
  4. 4.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147. doi: 10.1126/science.282.5391.1145 PubMedCrossRefGoogle Scholar
  5. 5.
    Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP et al (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356. doi: 10.1056/NEJMsr040330 PubMedCrossRefGoogle Scholar
  6. 6.
    Park SP, Lee YJ, Lee KS, Shin HA, Cho HY, Chung KS et al (2004) Establishment of human embryonic stem cell lines from frozen-thawed blastocysts using STO cell feeder layers. Hum Reprod 19:676–684. doi: 10.1093/humrep/deh102 PubMedCrossRefGoogle Scholar
  7. 7.
    Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404. doi: 10.1038/74447 PubMedCrossRefGoogle Scholar
  8. 8.
    Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ et al (2008) Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2:113–117. doi: 10.1016/j.stem.2007.12.013 PubMedCrossRefGoogle Scholar
  9. 9.
    Geens M, Mateizel I, Sermon K, De Rycke M, Spits C, Cauffman G et al (2009) Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum Reprod 24:2709–2717. doi: 10.1093/humrep/dep262 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Klimanskaya I, Chung Y, Becker S, Lu S-J, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444:481–485. doi: 10.1038/nature05142 PubMedCrossRefGoogle Scholar
  11. 11.
    Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2007) Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2:1963–1972. doi: 10.1038/nprot.2007.274 [pii]\r10.1038/nprot.2007.274 [doi]PubMedCrossRefGoogle Scholar
  12. 12.
    Strelchenko N, Verlinsky O, Kukharenko V, Verlinsky Y (2004) Morula-derived human embryonic stem cells. Reprod BioMed Online 9:623–629. doi: 10.1016/S1472-6483(10)61772-5 PubMedCrossRefGoogle Scholar
  13. 13.
    Strelchenko N, Verlinsky Y (2006) Embryonic stem cells from Morula. Methods Enzymol 418:93–108. doi: 10.1016/S0076-6879(06)18006-4 PubMedCrossRefGoogle Scholar
  14. 14.
    Giritharan G, Ilic D, Gormley M, Krtolica A (2011) Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles. PLoS One 6:e26570. doi: 10.1371/journal.pone.0026570 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lin G, OuYang Q, Zhou X, Gu Y, Yuan D, Li W et al (2007) A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 17:999–1007. doi: 10.1038/cr.2007.97 PubMedCrossRefGoogle Scholar
  16. 16.
    Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376. doi: 10.1038/311374a0 PubMedCrossRefGoogle Scholar
  17. 17.
    Surani MA, Kaufman MH, Barton SC (1977) Normal postimplantation development of mouse parthenogenetic embryos to the forelimb bud stage. Nature 265:53–55PubMedCrossRefGoogle Scholar
  18. 18.
    Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nat Educ 308:548–550. doi: 10.1038/308548a0
  19. 19.
    Kuno N, Kadomatsu K, Nakamura M, Miwa-Fukuchi T, Hirabayashi N, Ishizuka T (2004) Mature ovarian cystic teratoma with a highly differentiated homunculus: a case report. Birth Defects Res Part A – Clin Mol Teratol 70:40–46. doi: 10.1002/bdra.10133 PubMedCrossRefGoogle Scholar
  20. 20.
    Mutter GL (1997) Role of imprinting in abnormal human development. Mutat Res Fundam Mol Mech Mutagen 396:141–147. doi: 10.1016/S0027-5107(97)00180-2 CrossRefGoogle Scholar
  21. 21.
    Garcia Oliveira F, Dozortsev D, Diamond MP, Fracasso A, Abdelmassih S, Abdelmassih V et al (2004) Evidence of parthenogenetic origin of ovarian teratoma: case report. Hum Reprod 19:1867–1870. doi: 10.1093/humrep/deh345
  22. 22.
    Parrington JM, West LF, Povey S (1984) The origin of ovarian teratomas. J Med Genet 21:4–12. doi: 10.1136/jmg.21.1.4 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Epsztejn-Litman S, Cohen-Hadad Y, Aharoni S, Altarescu G, Renbaum P, Levy-Lahad E et al (2015) Establishment of homozygote mutant human embryonic stem cells by parthenogenesis. PLoS One 10:e0138893. doi: 10.1371/journal.pone.0138893 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Yanuka O, Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui L, Sauer MV, Benvenisty N, Egli D (2016) Derivation and differentiation of haploid human embryonic stem cells. Nature. doi: 10.1038/nature17408 PubMedGoogle Scholar
  25. 25.
    Munsie MJ, Michalska AE, O’Brien CM, Trounson AO, Pera MF, Mountford PS (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10:989–992. doi: 10.1016/S0960-9822(00)00648-5 PubMedCrossRefGoogle Scholar
  26. 26.
    Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S et al (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450:497–502. doi: 10.1038/nature06357 PubMedCrossRefGoogle Scholar
  27. 27.
    Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228–1238. doi: 10.1016/j.cell.2013.05.006 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chung YG, Eum JH, Lee JE, Shim SH, Sepilian V, Hong SW et al (2014) Human somatic cell nuclear transfer using adult cells. Cell Stem Cell 14:777–780. doi: 10.1016/j.stem.2014.03.015 PubMedCrossRefGoogle Scholar
  29. 29.
    Paull D, Yamada M, Johannesson B, Sagi I, Burnett LC, Kort DH, Prosser RW, Benvenisty N, Nestor MW, Freeby M, Greenberg E, Goland RS, Leibel RL, Solomon SL, Egli D, Sauer MV (2014) Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 510:533–536. doi: 10.1038/nature13287 PubMedCrossRefGoogle Scholar
  30. 30.
    Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:64–65. doi: 10.1038/182064a0 PubMedCrossRefGoogle Scholar
  31. 31.
    Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A 38:455–463. doi: 10.1073/pnas.38.5.455 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA et al (2002) Somatic cell nuclear transfer. Nature 419:583–586. doi: 10.1038/nature01079 PubMedCrossRefGoogle Scholar
  33. 33.
    Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C et al (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256–1258. doi: 10.1126/science.280.5367.1256 PubMedCrossRefGoogle Scholar
  34. 34.
    Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C et al (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17:456–461. doi: 10.1038/8632 PubMedCrossRefGoogle Scholar
  35. 35.
    Keefer CL, Baldassarre H, Keyston R, Wang B, Bhatia B, Bilodeau AS et al (2001) Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol Reprod 64:849–856. doi: 10.1095/biolreprod64.3.849 PubMedCrossRefGoogle Scholar
  36. 36.
    Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374. doi: 10.1038/28615 PubMedCrossRefGoogle Scholar
  37. 37.
    Betthauser J, Forsberg E, Augenstein M, Childs L, Eilertsen K, Enos J et al (2000) Production of cloned pigs from in vitro systems. Nat Biotechnol 18:1055–1059. doi: 10.1038/80242 PubMedCrossRefGoogle Scholar
  38. 38.
    Polejaeva IA, Chen S-H, Vaught TD, Page RL, Mullins J, Ball S et al (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86–90. doi: 10.1038/35024082 PubMedCrossRefGoogle Scholar
  39. 39.
    De Sousa PA, Dobrinsky JR, Zhu J, Archibald AL, Ainslie A, Bosma W et al (2002) Somatic cell nuclear transfer in the pig: control of pronuclear formation and integration with improved methods for activation and maintenance of pregnancy. Biol Reprod 66:642–650. doi: 10.1095/biolreprod66.3.642 PubMedCrossRefGoogle Scholar
  40. 40.
    Schneuwly S, Klemenz R, Gehring WJ (1987) Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 325:816–818. doi: 10.1038/325816a0 PubMedCrossRefGoogle Scholar
  41. 41.
    Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000. doi: 10.1016/0092-8674(87)90585-X PubMedCrossRefGoogle Scholar
  42. 42.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi: 10.1016/j.cell.2006.07.024 PubMedCrossRefGoogle Scholar
  43. 43.
    Welstead GG, Brambrink T, Jaenisch R (2008) Generating iPS cells from MEFS through forced expression of Sox-2, Oct-4, c-Myc, and Klf4. J Vis Exp 14:e734. doi: 10.3791/734 Google Scholar
  44. 44.
    Yamanaka S (2008) Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond Ser B Biol Sci 363:2079–2087. doi: 10.1098/rstb.2008.2261 CrossRefGoogle Scholar
  45. 45.
    Hamilton B, Feng Q, Ye M, Welstead GG (2009) Generation of induced pluripotent stem cells by reprogramming mouse embryonic fibroblasts with a four transcription factor, doxycycline inducible lentiviral transduction system. J Vis Exp 33:1–5. doi: 10.3791/1447 Google Scholar
  46. 46.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi: 10.1016/j.cell.2007.11.019 PubMedCrossRefGoogle Scholar
  47. 47.
    Takahashi K, Yamanaka S (2015) A developmental framework for induced pluripotency. Development 142:3274–3285. doi: 10.1242/dev.114249 PubMedCrossRefGoogle Scholar
  48. 48.
    Sur M, Cassady JP, D’Alessio AC, Sarkar S, Dani VS, Fan ZP, Ganz K, Roessler R, Jaenisch R, Young RA (2014) Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells. Stem Cell Reports 3:948–956. doi: 10.1016/j.stemcr.2014.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Aasen T, Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5:371–382. doi: 10.1038/nprot.2009.241 [pii]\r10.1038/nprot.2009.241PubMedCrossRefGoogle Scholar
  50. 50.
    Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284. doi: 10.1038/nbt.1503 PubMedCrossRefGoogle Scholar
  51. 51.
    Perna F, Kotini AG, Chang CJ, Boussaad I, Delrow JJ, Dolezal EK, Nagulapally AB, Nimer SD, Fishbein GA, Klimek VM, Hawkins RD, Huangfu D, Murry CE, Graubert T, Papapetrou EP (2015) Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nat Biotechnol 33:646–655. doi: 10.1038/nbt.3178 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ye Z, Zhan H, Mali P, Dowey S, Williams DM, Jang YY et al (2009) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114:5473–5480. doi: 10.1182/blood-2009-04-217406 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yi F, Liu G-H, Belmonte JCI (2012) Human induced pluripotent stem cells derived hepatocytes: rising promise for disease modeling, drug development and cell therapy. Protein Cell 3:246–250. doi: 10.1007/s13238-012-2918-4 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kumano K, Arai S, Hosoi M, Taoka K, Takayama N, Otsu M et al (2012) Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood 119:6234–6242. doi: 10.1182/blood-2011-07-367441 PubMedCrossRefGoogle Scholar
  55. 55.
    Miyoshi N, Ishii H, Nagai K, Hoshino H, Mimori K, Tanaka F et al (2010) Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A 107:40–45. doi: 10.1073/pnas.0912407107 PubMedCrossRefGoogle Scholar
  56. 56.
    Ghodsizadeh A, Taei A, Totonchi M, Seifinejad A, Gourabi H, Pournasr B et al (2010) Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev Rep 6:622–632. doi: 10.1007/s12015-010-9189-3 CrossRefGoogle Scholar
  57. 57.
    Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384. doi: 10.1016/j.stem.2009.04.005 PubMedCrossRefGoogle Scholar
  58. 58.
    Kim D, Kim C-H, Moon J-I, Chung Y-G, Chang M-Y, Han B-S et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476. doi: 10.1016/j.stem.2009.05.005 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412. doi: 10.1038/nmeth.1591 PubMedCrossRefGoogle Scholar
  60. 60.
    Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630. doi: 10.1016/j.stem.2010.08.012 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376–388. doi: 10.1016/j.stem.2011.03.001 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    González F, Boué S, Belmonte JCI (2011) Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat Rev Genet 12:231–242. doi: 10.1038/nrg2937 PubMedCrossRefGoogle Scholar
  63. 63.
    Seifinejad A, Tabebordbar M, Baharvand H, Boyer LA, Salekdeh GH (2010) Progress and promise towards safe induced pluripotent stem cells for therapy. Stem Cell Rev 6:297–306. doi: 10.1007/s12015-010-9121-x PubMedCrossRefGoogle Scholar
  64. 64.
    Wu J, Izpisua Belmonte JC (2015) Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17:509–525. doi: 10.1016/j.stem.2015.10.009 PubMedCrossRefGoogle Scholar
  65. 65.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106. doi: 10.1038/nbt1374 PubMedCrossRefGoogle Scholar
  66. 66.
    Markoulaki S, Hanna J, Beard C, Carey BW, Cheng AW, Lengner CJ et al (2009) Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nat Biotechnol 27:169–171. doi: 10.1038/nbt.1520 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317. doi: 10.1038/nature05934 PubMedCrossRefGoogle Scholar
  68. 68.
    Wernig M, Meissner A, Cassady JP, Jaenisch R (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2:10–12. doi: 10.1016/j.stem.2007.12.001 PubMedCrossRefGoogle Scholar
  69. 69.
    Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949. doi: 10.1126/science.1162494 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chang CW, Lai YS, Pawlik KM, Liu K, Sun CW, Li C et al (2009) Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27:1042–1049. doi: 10.1002/stem.39 PubMedCrossRefGoogle Scholar
  71. 71.
    Prevec L, Graham FL (1992) Adenovirus-based expression vectors and recombinant vaccines. Biotechnol J 20:363–390Google Scholar
  72. 72.
    He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514. doi: 10.1073/pnas.95.5.2509 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667–2674. doi: 10.1002/stem.201 PubMedCrossRefGoogle Scholar
  74. 74.
    Kim SS, Lee J, Hong F, Kwon S, Kim SS, Kim DO, Kang HS, Lee SJ, Ha J (2002) Activation of p38 MAPK induces cell cycle arrest via inhibition of Raf/ERK pathway during muscle differentiation. Biochem Biophys Res Commun 298:765–771PubMedCrossRefGoogle Scholar
  75. 75.
    Di Segni M, Meraviglia V, Zanon A, Lavdas AA, Schwienbacher C, Silipigni R, Rossini A, Chen HS, Pramstaller PP, Hicks AA (2015) Generation of induced pluripotent stem cells from frozen buffy coats using non-integrating episomal plasmids. J Vis Exp 100:e52885. doi: 10.3791/52885 Google Scholar
  76. 76.
    Zhang S, Hu W, He Y, Xiong Y, Lu H, Chen H, Hou L, Qiu Z, Fang Y (2016) Derivation, expansion, and motor neuron differentiation of human-induced pluripotent stem cells with non-integrating episomal vectors and a defined Xenogeneic-free culture system. Mol Neurobiol 53:1589–1600. doi: 10.1007/s12035-014-9084-z PubMedCrossRefGoogle Scholar
  77. 77.
    Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A et al (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31:458–466. doi: 10.1002/stem.1293 PubMedCrossRefGoogle Scholar
  78. 78.
    Cheng L, Hansen NF, Zhao L, Du Y, Zou C, Donovan FX et al (2012) Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell 10:337–344. doi: 10.1016/j.stem.2012.01.005 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Narsinh KH, Jia F, Robbins RC, Kay MA, Longaker MT, Wu JC (2011) Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 6:78–88. doi: 10.1038/nprot.2010.173 PubMedCrossRefGoogle Scholar
  80. 80.
    Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362. doi: 10.2183/pjab.85.348 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Verma PJ, Liu J (2015) Synthetic mRNA reprogramming of human fibroblast cells. Methods Mol Biol 1330:17–28. doi: 10.1007/978-1-4939-2848-4_2 PubMedCrossRefGoogle Scholar
  82. 82.
    Belting M, Sandgren S, Wittrup A (2005) Nuclear delivery of macromolecules: barriers and carriers. Adv Drug Deliv Rev 57:505–527. doi: 10.1016/j.addr.2004.10.004 PubMedCrossRefGoogle Scholar
  83. 83.
    El-Sayed A, Futaki S, Harashima H (2009) Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 11:13–22. doi: 10.1208/s12248-008-9071-2 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ziegler A, Nervi P, Dürrenberger M, Seelig J (2005) The cationic cell-penetrating peptide CPPTAT derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry 44:138–148. doi: 10.1021/bi0491604 PubMedCrossRefGoogle Scholar
  85. 85.
    Nie B, Wang H, Laurent T, Ding S (2012) Cellular reprogramming: a small molecule perspective. Curr Opin Cell Biol 24:784–792. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797. doi: 10.1038/nbt1418 PubMedCrossRefGoogle Scholar
  87. 87.
    Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P et al (2011) Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 21:196–204. doi: 10.1038/cr.2010.142 PubMedCrossRefGoogle Scholar
  88. 88.
    Li Z, Rana TM (2012) A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation. Nat Commun 3:1085. doi: 10.1038/ncomms2059 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D et al (2015) Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 17:195–203. doi: 10.1016/j.stem.2015.06.003 PubMedCrossRefGoogle Scholar
  90. 90.
    Liu M-L, Zang T, Zou Y, Chang JC, Gibson JR, Huber KM et al (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun 4:2183. doi: 10.1038/ncomms3183 PubMedPubMedCentralGoogle Scholar
  91. 91.
    Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W et al (2014) Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 24:665–679. doi: 10.1038/cr.2014.32 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ladewig J, Mertens J, Kesavan J, Doerr J, Poppe D, Glaue F et al (2012) Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat Methods 9:575–578. doi: 10.1038/nmeth.1972 PubMedCrossRefGoogle Scholar
  93. 93.
    Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T et al (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7. doi: 10.1016/j.stem.2010.11.015
  94. 94.
    Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D et al (2013) Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 15:1507–1515. doi: 10.1038/ncb2872 PubMedCrossRefGoogle Scholar
  95. 95.
    Emonard H, Grimaud JA, Nusgens B, Lapière CM, Foidart JM (1987) Reconstituted basement-membrane matrix modulates fibroblast activities in vitro. J Cell Physiol 133:95–102PubMedCrossRefGoogle Scholar
  96. 96.
    Bergstrom R, Strom S, Holm F, Feki A, Hovatta O (2011) Xeno-free culture of human pluripotent stem cells. Methods Mol Biol 767:125–136. doi: 10.1007/978-1-61779-201-4_9 PubMedCrossRefGoogle Scholar
  97. 97.
    Ausubel LJ, Lopez PM, Couture LA (2011) GMP scale-up and banking of pluripotent stem cells for cellular therapy applications. Methods Mol Biol 767:147–159. doi: 10.1007/978-1-61779-201-4_11 PubMedCrossRefGoogle Scholar
  98. 98.
    Rodin S, Domogatskaya A, Ström S, Hansson EM, Chien KR, Inzunza J et al (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28:611–615. doi: 10.1038/nbt.1620 PubMedCrossRefGoogle Scholar
  99. 99.
    Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429. doi: 10.1038/nmeth.1593 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M et al (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 3:1236. doi: 10.1038/ncomms2231 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI et al (2010) Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 9:768–778. doi: 10.1038/nmat2812 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lu HF, Narayanan K, Lim SX, Gao S, Leong MF, Wan ACA (2012) A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 33:2419–2430. doi: 10.1016/j.biomaterials.2011.11.077 PubMedCrossRefGoogle Scholar
  103. 103.
    Draper JS, Moore HD, Ruban LN, Gokhale PJ, Andrews PW (2004) Culture and characterization of human embryonic stem cells. Stem Cells Dev 13:325–336. doi: 10.1089/scd.2004.13.325 PubMedCrossRefGoogle Scholar
  104. 104.
    Montserrat N, Ramírez-Bajo MJ, Xia Y, Sancho-Martinez I, Moya-Rull D, Miquel-Serra L et al (2012) Generation of induced pluripotent stem cells from human renal proximal tubular cells with only two transcription factors, OCT4 and SOX2. J Biol Chem 287:24131–24138. doi: 10.1074/jbc.M112.350413 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Montserrat N, de Oñate L, Garreta E, González F, Adamo A, Eguizábal C et al (2012) Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplant 21:815–825. doi: 10.3727/096368911X601019 PubMedCrossRefGoogle Scholar
  106. 106.
    Montserrat N, Nivet E, Sancho-Martinez I, Hishida T, Kumar S, Miquel L et al (2013) Reprogramming of human fibroblasts to pluripotency with lineage specifiers. Cell Stem Cell 13:341–350. doi: 10.1016/j.stem.2013.06.019 PubMedCrossRefGoogle Scholar
  107. 107.
    Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL et al (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187. doi: 10.1038/nbt1177 PubMedCrossRefGoogle Scholar
  108. 108.
    Meng G, Liu S, Rancourt DE (2012) Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev 21:2036–2048. doi: 10.1089/scd.2011.0489 PubMedCrossRefGoogle Scholar
  109. 109.
    Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin Y-Q et al (2010) Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci U S A 107:3558–3563. doi: 10.1073/pnas.0910172106 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K et al (2014) A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 4:3594. doi: 10.1038/srep03594 PubMedPubMedCentralGoogle Scholar
  111. 111.
    Leaky A, Weixiong J, Kuhnert F, Stuhlmann H (1999) Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J Exp Zool 284:67–81. doi: 10.1002/(SICI)1097-010X(19990615)284:1<67::AID-JEZ10>3.0.CO;2-O CrossRefGoogle Scholar
  112. 112.
    Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM (1994) Muscle-cell differentiation of embryonic stem-cells reflects myogenesis in-vivo-developmentally-regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164:87–101 <Go to ISI>://WOS:A1994NW44400008PubMedCrossRefGoogle Scholar
  113. 113.
    Chang H, Yoshimoto M, Umeda K, Iwasa T, Mizuno Y, Fukada S et al (2009) Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells. FASEB J 23:1907–1919. doi: 10.1096/fj.08-123661 PubMedCrossRefGoogle Scholar
  114. 114.
    Zheng JK, Wang Y, Karandikar A, Wang Q, Gai H, Liu AL et al (2006) Skeletal myogenesis by human embryonic stem cells. Cell Res 16:713–722. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  115. 115.
    Hwang Y, Suk S, Lin S, Tierney M, Du B, Seo T et al (2013) Directed in vitro myogenesis of human embryonic stem cells and their in vivo engraftment. PLoS One 8:e72023. doi: 10.1371/journal.pone.0072023 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(80):2064–2067. doi: 10.1126/science.1114758 PubMedCrossRefGoogle Scholar
  117. 117.
    Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010. doi: 10.1016/j.cell.2007.03.044 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Rossi CA, Pozzobon M, De Coppi P (2011) Advances in musculoskeletal tissue engineering: moving towards therapy. Organogenesis 6:167–172. doi: 10.4161/org.6.3.12419 CrossRefGoogle Scholar
  119. 119.
    Awaya T, Kato T, Mizuno Y, Chang H, Niwa A, Umeda K et al (2012) Selective development of myogenic mesenchymal cells from human embryonic and induced pluripotent stem cells. PLoS One 7. doi: 10.1371/journal.pone.0051638
  120. 120.
    Zhu X, Fu L, Yi F, Liu G-H, Ocampo A, Qu J et al (2014) Regeneration: making muscle from hPSCs. Cell Res 24:1159–1161. doi: 10.1038/cr.2014.91 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Tanaka A, Woltjen K, Miyake K, Hotta A, Ikeya M, Yamamoto T et al (2013) Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro. PLoS One 8:e61540. doi: 10.1371/journal.pone.0061540 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Yasuno T, Osafune K, Sakurai H, Asaka I, Tanaka A, Yamaguchi S et al (2014) Functional analysis of iPSC-derived myocytes from a patient with carnitine palmitoyltransferase II deficiency. Biochem Biophys Res Commun 448:175–181. doi: 10.1016/j.bbrc.2014.04.084 PubMedCrossRefGoogle Scholar
  123. 123.
    Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103:389–398. doi: 10.1263/jbb.103.389 PubMedCrossRefGoogle Scholar
  124. 124.
    Bhagavati S, Xu W (2005) Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice. Biochem Biophys Res Commun 333:644–649. doi: 10.1016/j.bbrc.2005.05.135 PubMedCrossRefGoogle Scholar
  125. 125.
    Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta, Gen Subj 1840:2506–2519. doi: 10.1016/j.bbagen.2014.01.010 CrossRefGoogle Scholar
  126. 126.
    Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081. doi: 10.1126/science.1191035 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Ciciliot S, Schiaffino S (2010) Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des 16:906–914. doi: 10.2174/138161210790883453 PubMedCrossRefGoogle Scholar
  128. 128.
    Mizuno Y, Chang H, Umeda K, Niwa A, Iwasa T, Awaya T et al (2010) Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J 24:2245–2253. doi: 10.1096/fj.09-137174 PubMedCrossRefGoogle Scholar
  129. 129.
    Abujarour R, Bennett M, Valamehr B, Lee TT, Robinson M, Robbins D et al (2014) Myogenic differentiation of muscular dystrophy-specific induced pluripotent stem cells for use in drug discovery. Stem Cells Transl Med 3:149–160. doi: 10.5966/sctm.2013-0095 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Huang NF, Patel S, Thakar RG, Wu J, Hsiao BS, Chu B et al (2006) Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett 6:537–542. doi: 10.1021/nl060060o PubMedCrossRefGoogle Scholar
  131. 131.
    Shimizu K, Fujita H, Nagamori E (2009) Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives. Biotechnol Bioeng 103:631–638. doi: 10.1002/bit.22268 PubMedCrossRefGoogle Scholar
  132. 132.
    Altomare L, Riehle M, Gadegaard N, Tanzi M, Farè S (2010) Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int J Artif Organs 33:535–543Google Scholar
  133. 133.
    Molnar P, Wang W, Natarajan A, Rumsey JW, Hickman JJ (2007) Photolithographic patterning of C2C12 myotubes using vitronectin as growth substrate in serum-free medium. Biotechnol Prog 23:265–268. doi: 10.1021/bp060302q PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26:127–134. doi: 10.1634/stemcells.2007-0520 PubMedCrossRefGoogle Scholar
  135. 135.
    Ker EDF, Nain AS, Weiss LE, Wang J, Suhan J, Amon CH et al (2011) Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32:8097–8107. doi: 10.1016/j.biomaterials.2011.07.025 PubMedCrossRefGoogle Scholar
  136. 136.
    Wilmut I, Sullivan G, Chambers I (2011) The evolving biology of cell reprogramming. Philos Trans R Soc Lond Ser B Biol Sci 366:2183–2197. doi: 10.1098/rstb.2011.0051 CrossRefGoogle Scholar
  137. 137.
    Lagunas A, Comelles J, Oberhansl S, Hortigüela V, Martínez E, Samitier J (2013) Continuous bone morphogenetic protein-2 gradients for concentration effect studies on C2C12 osteogenic fate, Nanomedicine Nanotechnology. Biomark Med 9:694–701. doi: 10.1016/j.nano.2012.12.002 Google Scholar
  138. 138.
    Almodóvar J, Guillot R, Monge C, Vollaire J, Selimović Š, Coll JL et al (2014) Spatial patterning of BMP-2 and BMP-7 on biopolymeric films and the guidance of muscle cell fate. Biomaterials 35:3975–3985. doi: 10.1016/j.biomaterials.2014.01.012 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Sun Y, Duffy R, Lee A, Feinberg AW (2013) Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomater 9:7885–7894. doi: 10.1016/j.actbio.2013.04.036 PubMedCrossRefGoogle Scholar
  140. 140.
    Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462:433–441. doi: 10.1038/nature08602 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Vunjak-Novakovic G, Scadden DT (2011) Biomimetic platforms for human stem cell research. Cell Stem Cell 8:252–261. doi: 10.1016/j.stem.2011.02.014 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Liao H, Zhou G-Q (2009) Development and progress of engineering of skeletal muscle tissue. Tissue Eng Part B Rev 15:319–331. doi: 10.1089/ten.teb.2009.0092 PubMedCrossRefGoogle Scholar
  143. 143.
    Walters BD, Stegemann JP (2014) Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater 10:1488–1501. doi: 10.1016/j.actbio.2013.08.038 PubMedCrossRefGoogle Scholar
  144. 144.
    Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D (2013) Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv 31:669–687. doi: 10.1016/j.biotechadv.2012.11.007 PubMedCrossRefGoogle Scholar
  145. 145.
    Gu Y, Liu GH, Plongthongkum N, Benner C, Yi F, Qu J et al (2014) Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes. Protein Cell 5:59–68. doi: 10.1007/s13238-013-0016-x PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Aviss KJ, Gough JE, Downes S (2010) Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cells Mater 19:193–204 doi:vol019a19 [pii]CrossRefGoogle Scholar
  147. 147.
    Mertens JP, Sugg KB, Lee JD, Larkin LM (2014) Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue. Regen Med 9:89–100. doi: 10.2217/rme.13.81 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G (2014) Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 32:245–253. doi: 10.1016/j.tibtech.2014.03.004 PubMedCrossRefGoogle Scholar
  149. 149.
    Jeon KJ, Park SH, Shin JW, Kang YG, Hyun J-S, Oh MJ et al (2014) Combined effects of flow-induced shear stress and micropatterned surface morphology on neuronal differentiation of human mesenchymal stem cells. J Biosci Bioeng 117:242–247. doi: 10.1016/j.jbiosc.2013.08.002 PubMedCrossRefGoogle Scholar
  150. 150.
    Chen G-Y, Pang DW-P, Hwang S-M, Tuan H-Y, Hu Y-C (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33:418–427. doi: 10.1016/j.biomaterials.2011.09.071 PubMedCrossRefGoogle Scholar
  151. 151.
    Yu H, Tay CY, Pal M, Leong WS, Li H, Li H et al (2013) A bio-inspired platform to modulate myogenic differentiation of human mesenchymal stem cells through focal adhesion regulation. Adv Healthc Mater 2:442–449. doi: 10.1002/adhm.201200142 PubMedCrossRefGoogle Scholar
  152. 152.
    Gossett DR, Weaver WM, MacH AJ, Hur SC, Tse HTK, Lee W et al (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267. doi: 10.1007/s00216-010-3721-9 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Kamm RD, Wan CR, Chung S (2011) Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann Biomed Eng 39:1840–1847. doi: 10.1007/s10439-011-0275-8 PubMedCrossRefGoogle Scholar
  154. 154.
    Truckenmüller R, Gottwald E, Giselbrecht S, Augspurger C, Lahni B, Dambrowsky N, Welle A, Piotter V, Gietzelt T, Wendt O, Pfleging W, Welle A, Rolletschek A, Weibezahn KF (2007) A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Lab Chip 7:777–785PubMedCrossRefGoogle Scholar
  155. 155.
    Reichen M, Veraitch FS, Szita N (2013) Development of a multiplexed microfluidic platform for the automated cultivation of embryonic stem cells. J Lab Autom 18:519–529. doi: 10.1177/2211068213499917 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES et al (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5:401–406. doi: 10.1039/b417651k PubMedCrossRefGoogle Scholar
  157. 157.
    Xu B-Y, Hu S-W, Qian G-S, Xu J-J, Chen H-Y (2013) A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays. Lab Chip 13:3714–3720. doi: 10.1039/C3LC50676B PubMedCrossRefGoogle Scholar
  158. 158.
    Moreno EL, Hachi S, Hemmer K, Trietsch SJ, Baumuratov AS, Hankemeier T et al (2015) Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. Lab Chip 15:2419–2428. doi: 10.1039/c5lc00180c PubMedCrossRefGoogle Scholar
  159. 159.
    Reitinger S, Wissenwasser J, Kapferer W, Heer R, Lepperdinger G (2012) Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells. Biosens Bioelectron 34:63–69. doi: 10.1016/j.bios.2012.01.013 PubMedCrossRefGoogle Scholar
  160. 160.
    Shih C-J, Kau N-H, Tsai B-C (2007) Stem cell differentiation base on acoustic wave sensor. In: 2nd IEEE international conference of nano/micro engineered and molecular systems, vol. 2728, pp 626–629. doi:10.1109/NEMS.2007.352096Google Scholar
  161. 161.
    Uzel SGM, Pavesi A, Kamm RD (2014) Microfabrication and microfluidics for muscle tissue models. Prog Biophys Mol Biol 115:279–293. doi: 10.1016/j.pbiomolbio.2014.08.013 PubMedCrossRefGoogle Scholar
  162. 162.
    Senesi P, Luzi L, Montesano A, Mazzocchi N, Terruzzi I (2013) Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation. J Transl Med 11:174. doi: 10.1186/1479-5876-11-174 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Dugan JM, Gough JE, Eichhorn SJ (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11:2498–2504. doi: 10.1021/bm100684k PubMedCrossRefGoogle Scholar
  164. 164.
    Kroehne V, Heschel I, Schügner F, Lasrich D, Bartsch JW, Jockusch H (2008) Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. J Cell Mol Med 12:1640–1648. doi: 10.1111/j.1582-4934.2008.00238.x PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Floren M, Bonani W, Dharmarajan A, Motta A, Migliaresi C, Tan W (2015) Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype, Acta Biomater. doi: 10.1016/j.actbio.2015.11.051 Google Scholar
  166. 166.
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668. doi: 10.1126/science.1188302
  167. 167.
    Watt FM, Huck WTS (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14:467–473. doi: 10.1038/nrm3620 PubMedCrossRefGoogle Scholar
  168. 168.
    Hume SL, Hoyt SM, Walker JS, Sridhar BV, Ashley JF, Bowman CN et al (2012) Alignment of multi-layered muscle cells within three-dimensional hydrogel macrochannels. Acta Biomater 8:2193–2202. doi: 10.1016/j.actbio.2012.02.001 PubMedCrossRefGoogle Scholar
  169. 169.
    Yang HS, Ieronimakis N, Tsui JH, Kim HN, Suh KY, Reyes M et al (2014) Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy. Biomaterials 35:1478–1486. doi: 10.1016/j.biomaterials.2013.10.067 PubMedCrossRefGoogle Scholar
  170. 170.
    Zatti S, Zoso A, Serena E, Luni C, Cimetta E, Elvassore N (2012) Micropatterning topology on soft substrates affects myoblast proliferation and differentiation. Langmuir 28:2718–2726. doi: 10.1021/la204776e PubMedCrossRefGoogle Scholar
  171. 171.
    Lam MT, Huang YC, Birla RK, Takayama S (2009) Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs. Biomaterials 30:1150–1155. doi: 10.1016/j.biomaterials.2008.11.014 PubMedCrossRefGoogle Scholar
  172. 172.
    Roman HN, Juncker D, Lauzon AM (2015) A microfluidic chamber to study the dynamics of muscle-contraction-specific molecular interactions. Anal Chem 87:2582–2587. doi: 10.1021/ac503963r PubMedCrossRefGoogle Scholar
  173. 173.
    Shimizu K, Araki H, Sakata K, Tonomura W, Hashida M, Konishi S (2015) Microfluidic devices for construction of contractile skeletal muscle microtissues. J Biosci Bioeng 119:212–216. doi: 10.1016/j.jbiosc.2014.07.003 PubMedCrossRefGoogle Scholar
  174. 174.
    Hinds S, Bian W, Dennis RG, Bursac N (2011) The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials 32:3575–3583. doi: 10.1016/j.biomaterials.2011.01.062 PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M et al (2012) A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 18:910–919. doi: 10.1089/ten.TEA.2011.0341 PubMedCrossRefGoogle Scholar
  176. 176.
    Vandenburgh H, Shansky J, Benesch-Lee F, Barbata V, Reid J, Thorrez L et al (2008) Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37:438–447. doi: 10.1002/mus.20931 PubMedCrossRefGoogle Scholar
  177. 177.
    Sakar MS, Neal D, Boudou T, Borochin MA, Li Y, Weiss R et al (2012) Formation and optogenetic control of engineered 3D skeletal muscle bioactuators, Lab Chip 12(23):4976–4985. doi: 10.1016/j.biotechadv.2011.08.021.Secreted
  178. 178.
    Morimoto Y, Kato-Negishi M, Onoe H, Takeuchi S (2013) Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials 34:9413–9419. doi: 10.1016/j.biomaterials.2013.08.062 PubMedCrossRefGoogle Scholar
  179. 179.
    Chan V, Neal DM, Uzel SGM, Kim H, Bashir R, Asada HH (2015) Fabrication and characterization of optogenetic, multi-strip cardiac muscles. Lab Chip 15:2258–2268. doi: 10.1039/C5LC00222B PubMedCrossRefGoogle Scholar
  180. 180.
    Neal D, Sakar MS, Ong LL, Harry Asada H (2014) Formation of elongated fascicle-inspired 3D tissues consisting of high-density, aligned cells using sacrificial outer molding. Lab Chip 14:1907–1916. doi: 10.1039/c4lc00023d PubMedCrossRefGoogle Scholar
  181. 181.
    Atala A, Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34:312–319. doi: 10.1038/nbt.3413 PubMedCrossRefGoogle Scholar
  182. 182.
    Martin NRW, Passey SL, Player DJ, Mudera V, Baar K, Greensmith L et al (2015) Neuromuscular junction formation in tissue engineered skeletal muscle augments contractile function and improves cytoskeletal organisation. Tissue Eng Part A 150713044049008. doi: 10.1089/ten.TEA.2015.0146
  183. 183.
    Takeuchi A, Nakafutami S, Tani H, Mori M, Takayama Y, Moriguchi H et al (2011) Device for co-culture of sympathetic neurons and cardiomyocytes using microfabrication. Lab Chip 11:2268–2275. doi: 10.1039/c0lc00327a PubMedCrossRefGoogle Scholar
  184. 184.
    Southam KA, King AE, Blizzard CA, McCormack GH, Dickson TC (2013) Microfluidic primary culture model of the lower motor neuron-neuromuscular junction circuit. J Neurosci Methods 218:164–169. doi: 10.1016/j.jneumeth.2013.06.002 PubMedCrossRefGoogle Scholar
  185. 185.
    Tong Z, Seira O, Casas C, Reginensi D, Homs-Corbera A, Samitier J et al (2014) Engineering a functional neuro-muscular junction model in a chip. RSC Adv 4:54788–54797. doi: 10.1039/C4RA10219C CrossRefGoogle Scholar
  186. 186.
    Buckingham M, Rigby PWJ (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238. doi: 10.1016/j.devcel.2013.12.020 PubMedCrossRefGoogle Scholar
  187. 187.
    Gros J, Manceau M, Thomé V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958. doi: 10.1038/nature03572 PubMedCrossRefGoogle Scholar
  188. 188.
    Dekel I, Magal Y, Pearson-White S, Emerson CP, Shani M (1992) Conditional conversion of ES cells to skeletal muscle by an exogenous MyoD1 gene. New Biotechnol 4:217–224Google Scholar
  189. 189.
    Ozasa S, Kimura S, Ito K, Ueno H, Ikezawa M, Matsukura M et al (2007) Efficient conversion of ES cells into myogenic lineage using the gene-inducible system. Biochem Biophys Res Commun 357:957–963. doi: 10.1016/j.bbrc.2007.04.032 PubMedCrossRefGoogle Scholar
  190. 190.
    Tedesco FS, Gerli MFM, Perani L, Benedetti S, Ungaro F, Cassano M et al (2012) Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 4:140ra89–140ra89. doi: 10.1126/scitranslmed.3003541 PubMedCrossRefGoogle Scholar
  191. 191.
    Goudenege S, Lebel C, Huot NB, Dufour C, Fujii I, Gekas J et al (2012) Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol Ther. doi: 10.1038/mt.2012.188 PubMedPubMedCentralGoogle Scholar
  192. 192.
    Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T et al (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137. doi: 10.1016/j.stem.2012.09.013 PubMedCrossRefGoogle Scholar
  193. 193.
    Iacovino M, Bosnakovski D, Fey H, Rux D, Bajwa G, Mahen E et al (2011) Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells. Stem Cells 29:1580–1587. doi: 10.1002/stem.715 PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Darabi R, Santos FNC, Filareto A, Pan W, Koene R, Rudnicki MA et al (2011) Assessment of the myogenic stem cell compartment following transplantation of Pax3/Pax7-induced embryonic stem cell-derived progenitors. Stem Cells 29:777–790. doi: 10.1002/stem.625 PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Darabi R, Pan W, Bosnakovski D, Baik J, Kyba M, Perlingeiro RCR (2011) Functional myogenic engraftment from mouse iPS cells. Stem Cell Rev Rep 7:948–957. doi: 10.1007/s12015-011-9258-2 CrossRefGoogle Scholar
  196. 196.
    Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M et al (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10:610–619. doi: 10.1016/j.stem.2012.02.015 PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Yamamoto H, Mizuno Y, Chang H, Umeda K, Niwa A, Iwasa T, Awaya T, Fukada S, Heike T, Yamanaka S, Nakahata T (2010) Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J 24:2245–2253. doi: 10.1096/fj.09-137174 PubMedCrossRefGoogle Scholar
  198. 198.
    Wobus AM, Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J (1994) In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells is specifically modulated by retinoic acid. Roux’s Arch Dev Biol 204:36–45CrossRefGoogle Scholar
  199. 199.
    Karpati G, Tian C, Lu Y, Gilbert R (2008) Differentiation of murine embryonic stem cells in skeletal muscles of mice. Cell Transpl 17:325–335CrossRefGoogle Scholar
  200. 200.
    Sakurai H, Okawa Y, Inami Y, Nishio N, Isobe K (2008) Paraxial mesodermal progenitors derived from mouse embryonic stem cells contribute to muscle regeneration via differentiation into muscle satellite cells. Stem Cells 26:1865–1873. doi: 10.1634/stemcells.2008-0173 PubMedCrossRefGoogle Scholar
  201. 201.
    Sakurai H, Sakaguchi Y, Shoji E, Nishino T, Maki I, Sakai H et al (2012) In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS One 7:e47078. doi: 10.1371/journal.pone.0047078 PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Barberi T, Willis LM, Socci ND, Studer L (2005) Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med 2:e161. doi: 10.1371/journal.pmed.0020161 PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Barberi T, Bradbury M, Dincer Z, Panagiotakos G, Socci ND, Studer L (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 13:642–648. doi: 10.1038/nm1533 PubMedCrossRefGoogle Scholar
  204. 204.
    M.E. Stavropoulos, I. Mengarelli, T. Barberi (2009) Differentiation of multipotent mesenchymal precursors and skeletal myoblasts from human embryonic stem cells. Curr Protoc Stem Cell Biol. Chapter 1 Unit 1F.8. doi:10.1002/9780470151808.sc01f08s9Google Scholar
  205. 205.
    Hwang Y, Phadke A, Varghese S (2011) Engineered microenvironments for self-renewal and musculoskeletal differentiation of stem cells. Regen Med 6:505–524. doi: 10.2217/rme.11.38 PubMedCrossRefGoogle Scholar
  206. 206.
    Hwang Y, Suk S, Shih Y-RV, Seo T, Du B, Xie Y et al (2014) WNT3A promotes myogenesis of human embryonic stem cells and enhances in vivo engraftment. Sci Rep 4:5916. doi: 10.1038/srep05916 PubMedGoogle Scholar
  207. 207.
    Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J, Castiglioni A et al (2013) A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155:909–921. doi: 10.1016/j.cell.2013.10.023 PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Borchin B, Chen J, Barberi T (2013) Derivation and FACS-mediated purification of PAX3+/PAX7+ skeletal muscle precursors from human pluripotent stem cells. Stem Cell Reports 1:620–631. doi: 10.1016/j.stemcr.2013.10.007 PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J, Castiglioni A et al (2013) XA zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155. doi: 10.1016/j.cell.2013.10.023
  210. 210.
    Kahn CR, Iovino S, Burkart AM, Warren L, Patti ME (2016) Myotubes derived from human-induced pluripotent stem cells mirror in vivo insulin resistance. Proc Natl Acad Sci 113:1889–1894PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T et al (2014) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 4:143–154. doi: 10.1016/j.stemcr.2014.10.013 PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Calos MP, Turan S, Farruggio AP, Srifa W, Day JW (2016) Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular dystrophy. Mol Ther 24:685–696PubMedCrossRefGoogle Scholar
  213. 213.
    Lei T, Jacob S, Ajil-Zaraa I, Dubuisson J-B, Irion O, Jaconi M et al (2007) Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res 17:682–688. doi: 10.1038/cr.2007.61 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Elena Garreta
    • 1
    • 2
  • Andrés Marco
    • 1
    • 2
  • Cristina Eguizábal
    • 3
  • Carolina Tarantino
    • 1
    • 2
  • Mireia Samitier
    • 1
    • 2
  • Maider Badiola
    • 4
  • Joaquín Gutiérrez
    • 5
  • Josep Samitier
    • 2
    • 4
  • Nuria Montserrat
    • 1
    • 2
    Email author
  1. 1.Pluripotent stem cells and activation of endogenous tissue programs for organ regenerationInstitute for Bioengineering of Catalonia (IBEC)BarcelonaSpain
  2. 2.Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)MadridSpain
  3. 3.Basque Center for Transfusion and Human TissuesGaldakaoSpain
  4. 4.Nanobioengineering groupInstitute for Bioengineering of Catalonia (IBEC)BarcelonaSpain
  5. 5.Department of Engineering: ElectronicsUniversity of BarcelonaBarcelonaSpain

Personalised recommendations