Molecular Basis and Targeted Inhibition of CBFβ-SMMHC Acute Myeloid Leukemia

  • Lucio H. Castilla
  • John H. Bushweller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 962)


Acute myeloid leukemia (AML) is characterized by recurrent chromosomal rearrangements that encode for fusion proteins which drive leukemia initiation and maintenance. The inv(16)(p13q22) rearrangement is a founding mutation and the associated CBFβ-SMMHC fusion protein is essential for the survival of inv(16) AML cells. This Chapter will discuss our understanding of the function of this fusion protein in disrupting hematopoietic homeostasis and creating pre-leukemic blasts, in its cooperation with other co-occurring mutations during leukemia initiation, and in leukemia maintenance. In addition, this chapter will discuss the current approaches used for the treatment of inv(16) AML and the recent development of AI-10-49, a selective targeted inhibitor of CBFβ-SMMHC/RUNX1 binding, the first candidate targeted therapy for inv(16) AML.


CBF CBFb-MYH11 CBFbeta-SMMHC RUNX1 AML inv(16) Leukemia AI-10-49 Targeted therapies Protein-protein interaction inhibitor PPI 


  1. Bakshi, R., Hassan, M. Q., Pratap, J., Lian, J. B., Montecino, M. A., Van Wijnen, A. J., et al. (2010). The human SWI/SNF complex associates with RUNX1 to control transcription of hematopoietic target genes. Journal of Cellular Physiology, 225, 569–576.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ben-Ami, O., Friedman, D., Leshkowitz, D., Goldenberg, D., Orlovsky, K., Pencovich, N., et al. (2013). Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Reports, 4, 1131–1143.Google Scholar
  3. Bennett, J. M., Catovsky, D., Daniel, M. T., Flandrin, G., Galton, D. A., Gralnick, H. R., & Sultan, C. (1976). Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. British Journal of Haematology, 33, 451–458.CrossRefPubMedGoogle Scholar
  4. Blyth, K., Cameron, E. R., & Neil, J. C. (2005). The RUNX genes: Gain or loss of function in cancer. Nature Reviews Cancer, 5, 376–387.CrossRefPubMedGoogle Scholar
  5. Boissel, N., Leroy, H., Brethon, B., Philippe, N., De Botton, S., Auvrignon, A., et al. (2006). Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia, 20, 965–970.CrossRefPubMedGoogle Scholar
  6. Britos-Bray, M., Ramirez, M., Cao, W., Wang, X., Liu, P. P., Civin, C. I., & Friedman, A. D. (1998). CBFbeta-SMMHC, expressed in M4eo acute myeloid leukemia, reduces p53 induction and slows apoptosis in hematopoietic cells exposed to DNA-damaging agents. Blood, 92, 4344–4352.PubMedGoogle Scholar
  7. Cao, W., Britos-Bray, M., Claxton, D. F., Kelley, C. A., Speck, N. A., Liu, P. P., & Friedman, A. D. (1997). CBF beta-SMMHC, expressed in M4Eo AML, reduced CBF DNA-binding and inhibited the G1 to S cell cycle transition at the restriction point in myeloid and lymphoid cells. Oncogene, 15, 1315–1327.CrossRefPubMedGoogle Scholar
  8. Care, R. S., Valk, P. J., Goodeve, A. C., Abu-Duhier, F. M., Geertsma-Kleinekoort, W. M., wilson, G. A., et al. (2003). Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. British Journal of Haematology, 121, 775–777.CrossRefPubMedGoogle Scholar
  9. Castilla, L. H., Wijmenga, C., Wang, Q., Stacy, T., Speck, N. A., Eckhaus, M., et al. (1996). Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell, 87, 687–696.CrossRefPubMedGoogle Scholar
  10. Castilla, L. H., Garrett, L., Adya, N., Orlic, D., Dutra, A., Anderson, S., et al. (1999). The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nature Genetics, 23, 144–146.CrossRefPubMedGoogle Scholar
  11. Castilla, L. H., Perrat, P., Martinez, N. J., Landrette, S. F., Keys, R., Oikemus, S., et al. (2004). Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 101, 4924–4929.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cheng, C. K., Li, L., Cheng, S. H., Lau, K. M., Chan, N. P., Wong, R. S., et al. (2008). Transcriptional repression of the RUNX3/AML2 gene by the t(8;21) and inv(16) fusion proteins in acute myeloid leukemia. Blood, 112, 3391–3402.Google Scholar
  13. Chin, D. W., Watanabe-Okochi, N., Wang, C. Q., Tergaonkar, V., & Osato, M. (2015). Mouse models for core binding factor leukemia. Leukemia, 29, 1970–1980.CrossRefPubMedGoogle Scholar
  14. Claxton, D. F., Liu, P., Hsu, H. B., Marlton, P., Hester, J., Collins, F., et al. (1994). Detection of fusion transcripts generated by the inversion 16 chromosome in acute myelogenous leukemia. Blood, 83, 1750–1756.PubMedGoogle Scholar
  15. Corces-Zimmerman, M. R., Hong, W. J., Weissman, I. L., Medeiros, B. C., & Majeti, R. (2014). Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proceedings of the National Academy of Sciences of the United States of America, 111, 2548–2553.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cunningham, L., Finckbeiner, S., Hyde, R. K., Southall, N., Marugan, J., Yedavalli, V. R., et al. (2012). Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFbeta interaction. Proceedings of the National Academy of Sciences of the United States of America, 109, 14592–14597.CrossRefPubMedPubMedCentralGoogle Scholar
  17. D’costa, J., Chaudhuri, S., Civin, C. I., & Friedman, A. D. (2005). CBFbeta-SMMHC slows proliferation of primary murine and human myeloid progenitors. Leukemia, 19, 921–929.CrossRefPubMedGoogle Scholar
  18. Delaunay, J., Vey, N., Leblanc, T., Fenaux, P., Rigal-Huguet, F., Witz, F., et al. (2003). Prognosis of inv(16)/t(16;16) acute myeloid leukemia (AML): A survey of 110 cases from the French AML Intergroup. Blood, 102, 462–469.Google Scholar
  19. Ding, L., Ley, T. J., Larson, D. E., Miller, C. A., Koboldt, D. C., Welch, J. S., et al. (2012). Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature, 481, 506–510.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Duployez, N., Marceau-Renaut, A., Boissel, N., Petit, A., Bucci, M., Geffroy, S., et al. (2016). Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood, 127, 2451–2459.CrossRefPubMedGoogle Scholar
  21. Egawa, T., Tillman, R. E., Naoe, Y., Taniuchi, I., & Littman, D. R. (2007). The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. The Journal of Experimental Medicine, 204, 1945–1957.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Enright, H., Weisdorf, D., Peterson, L., Rydell, R. E., Kaplan, M. E., & Arthur, D. C. (1992). Inversion of chromosome 16 and dysplastic eosinophils in accelerated phase of chronic myeloid leukemia. Leukemia, 6, 381–384.PubMedGoogle Scholar
  23. Farag, S. S., Archer, K. J., Mrozek, K., Ruppert, A. S., Carroll, A. J., Vardiman, J. W., et al. (2006). Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: Results from Cancer and Leukemia Group B 8461. Blood, 108, 63–73.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fotouhi, N., & Graves, B. (2005). Small molecule inhibitors of p53/MDM2 interaction. Current Topics in Medicinal Chemistry, 5, 159–165.CrossRefPubMedGoogle Scholar
  25. Goemans, B. F., Zwaan, C. M., Miller, M., Zimmermann, M., Harlow, A., Meshinchi, S., et al. (2005). Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia, 19, 1536–1542.CrossRefPubMedGoogle Scholar
  26. Goyama, S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., et al. (2013). Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. The Journal of Clinical Investigation, 123, 3876–3888.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Grimwade, D., Hills, R. K., Moorman, A. V., Walker, H., Chatters, S., Goldstone, A. H., et al. (2010). Refinement of cytogenetic classification in acute myeloid leukemia: Determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood, 116, 354–365.CrossRefPubMedGoogle Scholar
  28. Growney, J. D., Shigematsu, H., Li, Z., Lee, B. H., Adelsperger, J., Rowan, R., et al. (2005). Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood, 106, 494–504.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Guo, H., Ma, O., Speck, N. A., & Friedman, A. D. (2012). Runx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesis. Blood, 119, 4408–4418.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Guzman, M. L., & Allan, J. N. (2014). Concise review: Leukemia stem cells in personalized medicine. Stem Cells, 32, 844–851.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Haase, D., Feuring-Buske, M., Konemann, S., Fonatsch, C., Troff, C., Verbeek, W., et al. (1995). Evidence for malignant transformation in acute myeloid leukemia at the level of early hematopoietic stem cells by cytogenetic analysis of CD34+ subpopulations. Blood, 86, 2906–2912.PubMedGoogle Scholar
  32. Haferlach, C., Dicker, F., Herholz, H., Schnittger, S., Kern, W., & Haferlach, T. (2008). Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia, 22, 1539–1541.CrossRefPubMedGoogle Scholar
  33. Haferlach, C., Dicker, F., Kohlmann, A., Schindela, S., Weiss, T., Kern, W., et al. (2010). AML with CBFB-MYH11 rearrangement demonstrate RAS pathway alterations in 92 % of all cases including a high frequency of NF1 deletions. Leukemia, 24, 1065–1069.CrossRefPubMedGoogle Scholar
  34. Han, E., Lee, H., Kim, M., Kim, Y., Han, K., Lee, S. E., et al. (2014). Characteristics of hematologic malignancies with coexisting t(9;22) and inv(16) chromosomal abnormalities. Blood Research, 49, 22–28.Google Scholar
  35. Hessels, D., & Schalken, J. A. (2013). Recurrent gene fusions in prostate cancer: Their clinical implications and uses. Current Urology Reports, 14, 214–222.CrossRefPubMedGoogle Scholar
  36. Huang, H., Woo, A. J., Waldon, Z., Schindler, Y., Moran, T. B., Zhu, H. H., et al. (2012). A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation. Genes & Development, 26, 1587–1601.CrossRefGoogle Scholar
  37. Hyde, R. K., Zhao, L., Alemu, L., & Liu, P. P. (2015). Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knock-in mice. Leukemia, 29, 1771–1778.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ikebe, M., Komatsu, S., Woodhead, J. L., Mabuchi, K., Ikebe, R., Saito, J., et al. (2001). The tip of the coiled-coil rod determines the filament formation of smooth muscle and nonmuscle myosin. The Journal of Biological Chemistry, 276, 30293–30300 Epub 2001 Jun 6.CrossRefPubMedGoogle Scholar
  39. Illendula, A., Pulikkan, J. A., Zong, H., Grembecka, J., Xue, L., Sen, S., et al. (2015). Chemical biology. A small-molecule inhibitor of the aberrant transcription factor CBFbeta-SMMHC delays leukemia in mice. Science, 347, 779–784.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Illendula, A., Gilmour, J., Grembecka, J., Srimath Tirumala, V., Boulton, A., Kuntimaddi, A., et al. (2016). Small molecule inhibitor of CBFβ-RUNX binding for RUNX transcription factor driven cancers. eBioMedicine, 8, 117–131.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jane-Valbuena, J., Widlund, H. R., Perner, S., Johnson, L. A., Dibner, A. C., lin, W. M., et al. (2010). An oncogenic role for ETV1 in melanoma. Cancer Research, 70, 2075–2084.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jongen-Lavrencic, M., Sun, S. M., Dijkstra, M. K., Valk, P. J., & Lowenberg, B. (2008). MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood, 111, 5078–5085.CrossRefPubMedGoogle Scholar
  43. Kamikubo, Y., Zhao, L., Wunderlich, M., Corpora, T., Hyde, R. K., Paul, T. A., et al. (2010). Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1. Cancer Cell, 17, 455–468.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kihara, R., Nagata, Y., Kiyoi, H., Kato, T., Yamamoto, E., Suzuki, K., et al. (2014). Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia, 28, 1586–1595.CrossRefPubMedGoogle Scholar
  45. Kim, H. G., Kojima, K., Swindle, C. S., Cotta, C. V., Huo, Y., Reddy, V., & Klug, C. A. (2008). FLT3-ITD cooperates with inv(16) to promote progression to acute myeloid leukemia. Blood, 111, 1567–1574.Google Scholar
  46. Kottaridis, P. D., Gale, R. E., Langabeer, S. E., Frew, M. E., Bowen, D. T., & Linch, D. C. (2002). Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: Implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood, 100, 2393–2398.CrossRefPubMedGoogle Scholar
  47. Kummalue, T., Lou, J., & Friedman, A. D. (2002). Multimerization via its myosin domain facilitates nuclear localization and inhibition of core binding factor (CBF) activities by the CBFbeta-smooth muscle myosin heavy chain myeloid leukemia oncoprotein. Molecular and Cellular Biology, 22, 8278–8291.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kuo, Y. H., Landrette, S. F., Heilman, S. A., Perrat, P. N., Garrett, L., Liu, P. P., et al. (2006). Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell, 9, 57–68.CrossRefPubMedGoogle Scholar
  49. Kuo, Y. H., Gerstein, R. M., & Castilla, L. H. (2008). Cbfbeta-SMMHC impairs differentiation of common lymphoid progenitors and reveals an essential role for RUNX in early B-cell development. Blood, 111, 1543–1551.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kuo, Y. H., Zaidi, S. K., Gornostaeva, S., Komori, T., Stein, G. S., & Castilla, L. H. (2009). Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice. Blood, 113, 3323–3332.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ladanyi, M. (1995). The emerging molecular genetics of sarcoma translocations. Diagnostic Molecular Pathology, 4, 162–173.CrossRefPubMedGoogle Scholar
  52. Le Beau, M. M., Larson, R. A., Bitter, M. A., Vardiman, J. W., Golomb, H. M., & Rowley, J. D. (1983). Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. New England Journal of Medicine, 309, 630–636.CrossRefPubMedGoogle Scholar
  53. Li, Z., Lu, J., Sun, M., Mi, S., Zhang, H., Luo, R. T., et al. (2008). Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proceedings of the National Academy of Sciences of the United States of America, 105, 15535–15540.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Liu, P., Claxton, D. F., Marlton, P., Hajra, A., Siciliano, J., Freedman, M., et al. (1993a). Identification of yeast artificial chromosomes containing the inversion 16 p-arm breakpoint associated with acute myelomonocytic leukemia. Blood, 82, 716–721.PubMedGoogle Scholar
  55. Liu, P., Tarle, S. A., Hajra, A., Claxton, D. F., Marlton, P., Freedman, M., et al. (1993b). Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science, 261, 1041–1044.CrossRefPubMedGoogle Scholar
  56. Liu, P. P., Hajra, A., Wijmenga, C., & Collins, F. S. (1995). Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia. [see comments]. [erratum appears in Blood 1997 Mar 1;89(5):1842]. Blood, 85, 2289–2302.Google Scholar
  57. Liu, P. P., Wijmenga, C., Hajra, A., Blake, T. B., Kelley, C. A., Adelstein, R. S., Bagg, A., Rector, J., Cotelingam, J., Willman, C. L., & Collins, F. S. (1996). Identification of the chimeric protein product of the CBFB-MYH11 fusion gene in inv(16) leukemia cells. [erratum appears in Genes Chromosomes Cancer 1997 Jan;18(1):71]. Genes, Chromosomes & Cancer, 16, 77–87.Google Scholar
  58. Look, A. T. (1997). Oncogenic transcription factors in the human acute leukemias. Science, 278, 1059–1064.CrossRefPubMedGoogle Scholar
  59. Lukasik, S. M., Zhang, L., Corpora, T., Tomanicek, S., Li, Y., Kundu, M., et al. (2002). Altered affinity of CBF beta-SMMHC for Runx1 explains its role in leukemogenesis. Nature Structural Biology, 9, 674–679.CrossRefPubMedGoogle Scholar
  60. Markus, J., Garin, M. T., Bies, J., Galili, N., Raza, A., Thirman, M. J., et al. (2007). Methylation-independent silencing of the tumor suppressor INK4b (p15) by CBFbeta-SMMHC in acute myelogenous leukemia with inv(16). Cancer Research, 67, 992–1000.Google Scholar
  61. Mchale, C. M., Wiemels, J. L., Zhang, L., Ma, X., Buffler, P. A., Feusner, J., et al. (2003). Prenatal origin of childhood acute myeloid leukemias harboring chromosomal rearrangements t(15;17) and inv(16). Blood, 101, 4640–4641.Google Scholar
  62. Mehrotra, B., George, T. I., Kavanau, K., Avet-Loiseau, H., Moore 2nd, D., Willman, C. L., et al. (1995). Cytogenetically aberrant cells in the stem cell compartment (CD34+lin-) in acute myeloid leukemia. Blood, 86, 1139–1147.PubMedGoogle Scholar
  63. Miano, J. M., Cserjesi, P., Ligon, K. L., Periasamy, M., & Olson, E. N. (1994). Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis. Circulation Research, 75, 803–812.CrossRefPubMedGoogle Scholar
  64. Miyazaki, M., Naito, H., Sugimoto, Y., Yoshida, K., Kawato, H., Okayama, T., et al. (2013). Synthesis and evaluation of novel orally active p53-MDM2 interaction inhibitors. Bioorganic & Medicinal Chemistry, 21, 4319–4331.CrossRefGoogle Scholar
  65. Monma, F., Nishii, K., Shiga, J., Sugahara, H., Lorenzo, F. T., Watanabe, Y., et al. (2007). Detection of the CBFB/MYH11 fusion gene in de novo acute myeloid leukemia (AML): A single-institution study of 224 Japanese AML patients. Leukemia Research, 31, 471–476.CrossRefPubMedGoogle Scholar
  66. Nakano, Y., Kiyoi, H., Miyawaki, S., Asou, N., Ohno, R., Saito, H., & Naoe, T. (1999). Molecular evolution of acute myeloid leukaemia in relapse: Unstable N-ras and FLT3 genes compared with p53 gene. British Journal of Haematology, 104, 659–664.CrossRefPubMedGoogle Scholar
  67. Oh, S., Shin, S., & Janknecht, R. (2012). ETV1, 4 and 5: An oncogenic subfamily of ETS transcription factors. Biochimica et Biophysica Acta, 1826, 1–12.PubMedPubMedCentralGoogle Scholar
  68. Okuda, T., Van Deursen, J., Hiebert, S. W., Grosveld, G., & Downing, J. R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84, 321–330.CrossRefPubMedGoogle Scholar
  69. Opatz, S., Polzer, H., Herold, T., Konstandin, N. P., Ksienzyk, B., Zellmeier, E., et al. (2013). Exome sequencing identifies recurring FLT3 N676 K mutations in core-binding factor leukemia. Blood, 122, 1761–1769.CrossRefPubMedGoogle Scholar
  70. Park, T. S., Lee, S. T., Song, J., Lee, K. A., Lee, J. H., Kim, J., et al. (2009). Detection of a novel CBFB/MYH11 variant fusion transcript (K-type) showing partial insertion of exon 6 of CBFB gene using two commercially available multiplex RT-PCR kits. Cancer Genetics and Cytogenetics, 189, 87–92.CrossRefPubMedGoogle Scholar
  71. Paschka, P., Marcucci, G., Ruppert, A. S., Mrozek, K., Chen, H., Kittles, R. A., et al. (2006). Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 24, 3904–3911.Google Scholar
  72. Paschka, P., Du, J., Schlenk, R. F., Gaidzik, V. I., Bullinger, L., Corbacioglu, A., et al. (2013). Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): A study of the German-Austrian AML Study Group (AMLSG). Blood, 121, 170–177.Google Scholar
  73. Pulsoni, A., Iacobelli, S., Bernardi, M., Borgia, M., Camera, A., Cantore, N., et al. (2008). M4 acute myeloid leukemia: The role of eosinophilia and cytogenetics in treatment response and survival. The GIMEMA experience. Haematologica, 93, 1025–1032.CrossRefPubMedGoogle Scholar
  74. Qi, J., Singh, S., Hua, W. K., Cai, Q., Chao, S. W., Li, L., et al. (2015). HDAC8 inhibition specifically targets inv(16) acute myeloid leukemic stem cells by restoring p53 acetylation. Cell Stem Cell, 17, 597–610.Google Scholar
  75. Ravandi, F., Burnett, A. K., Agura, E. D., & Kantarjian, H. M. (2007). Progress in the treatment of acute myeloid leukemia. Cancer, 110, 1900–1910.CrossRefPubMedGoogle Scholar
  76. Sasaki, K., Yagi, H., Bronson, R. T., Tominaga, K., Matsunashi, T., Deguchi, K., et al. (1996). Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proceedings of the National Academy of Sciences of the United States of America, 93, 12359–12363.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Schwind, S., Edwards, C. G., Nicolet, D., Mrozek, K., Maharry, K., wu, Y. Z., et al. (2013). inv(16)/t(16;16) acute myeloid leukemia with non-type A CBFB-MYH11 fusions associate with distinct clinical and genetic features and lack KIT mutations. Blood, 121, 385–391.Google Scholar
  78. Secker-Walker, L. M., Morgan, G. J., Min, T., Swansbury, G. J., Craig, J., Yamada, T., et al. (1992). Inversion of chromosome 16 with the Philadelphia chromosome in acute myelomonocytic leukemia with eosinophilia. Report of two cases. Cancer Genetics and Cytogenetics, 58, 29–34.CrossRefPubMedGoogle Scholar
  79. Seifert, H., Mohr, B., Thiede, C., Oelschlagel, U., Schakel, U., Illmer, T., et al. (2009). The prognostic impact of 17p (p53) deletion in 2272 adults with acute myeloid leukemia. Leukemia, 23, 656–663.CrossRefPubMedGoogle Scholar
  80. Seo, W., Ikawa, T., Kawamoto, H., & Taniuchi, I. (2012). Runx1-Cbfbeta facilitates early B lymphocyte development by regulating expression of Ebf1. The Journal of Experimental Medicine, 209, 1255–1262.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Shigesada, K., Van De Sluis, B., & Liu, P. P. (2004). Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene, 23, 4297–4307.Google Scholar
  82. Shih, L. Y., Liang, D. C., Huang, C. F., Chang, Y. T., Lai, C. L., Lin, T. H., et al. (2008). Cooperating mutations of receptor tyrosine kinases and Ras genes in childhood core-binding factor acute myeloid leukemia and a comparative analysis on paired diagnosis and relapse samples. Leukemia, 22, 303–307.CrossRefPubMedGoogle Scholar
  83. Shlush, L. I., Zandi, S., Mitchell, A., Chen, W. C., Brandwein, J. M., Gupta, V., et al. (2014). Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature, 506, 328–333.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sohn, R. L., Vikstrom, K. L., Strauss, M., Cohen, C., Szent-Gyorgyi, A. G., & leinwand, L. A. (1997). A 29 residue region of the sarcomeric myosin rod is necessary for filament formation. Journal of Molecular Biology, 266, 317–330.CrossRefPubMedGoogle Scholar
  85. Song, J., Mercer, D., Hu, X., Liu, H., & Li, M. M. (2011). Common leukemia- and lymphoma-associated genetic aberrations in healthy individuals. The Journal of Molecular Diagnostics, 13, 213–219.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sood, R., Hansen, N. F., Donovan, F. X., Carrington, B., Bucci, D., Maskeri, B., et al. (2016). Somatic mutational landscape of AML with inv(16) or t(8;21) identifies patterns of clonal evolution in relapse leukemia. Leukemia, 30, 501–504.Google Scholar
  87. Swerdlow, S. H., Campo, E., Harris, N. L., Jaffe, E. S., Pileri, S. A., Stein, H., et al. (2008). WHO classification of tumours of haematopoietic and lymphoid tissues. In OMS (Ed.), WHO classification of tumours of haematopoietic and lymphoid tissues (4th ed.). Lyon: World Health Organization.Google Scholar
  88. Valk, P. J., Verhaak, R. G., Beijen, M. A., Erpelinck, C. A., Barjesteh Van Waalwijk Van Doorn-Khosrovani, S., Boer, J. M., et al. (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. The New England Journal of Medicine, 350, 1617–1628.CrossRefPubMedGoogle Scholar
  89. Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H., & Speck, N. A. (1996a). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 93, 3444–3449.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wang, Q., Stacy, T., Miller, J. D., Lewis, A. F., Gu, T. L., Huang, X., et al. (1996b). The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell, 87, 697–708.CrossRefPubMedGoogle Scholar
  91. Wee, H. J., Voon, D. C., Bae, S. C., & Ito, Y. (2008). PEBP2-beta/CBF-beta-dependent phosphorylation of RUNX1 and p300 by HIPK2: Implications for leukemogenesis. Blood, 112, 3777–3787.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wu, Y., Slovak, M. L., Snyder, D. S., & Arber, D. A. (2006). Coexistence of inversion 16 and the Philadelphia chromosome in acute and chronic myeloid leukemias: Report of six cases and review of literature. American Journal of Clinical Pathology, 125, 260–266.CrossRefPubMedGoogle Scholar
  93. Xue, L., Pulikkan, J. A., Valk, P. J., & Castilla, L. H. (2014). NrasG12D oncoprotein inhibits apoptosis of preleukemic cells expressing Cbfbeta-SMMHC via activation of MEK/ERK axis. Blood, 124, 426–436.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zhang, D. E., Hetherington, C. J., Meyers, S., Rhoades, K. L., Larson, C. J., Chen, H. M., et al. (1996). CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Molecular and Cellular Biochemistry, 16, 1231–1240.CrossRefGoogle Scholar
  95. Zhang, L., D’costa, J., Kummalue, T., Civin, C. I., & Friedman, A. D. (2006). Identification of a region on the outer surface of the CBFbeta-SMMHC myeloid oncoprotein assembly competence domain critical for multimerization. Oncogene, 25, 7289–7296.CrossRefPubMedGoogle Scholar
  96. Zhang, Z., Ding, Q., Liu, J. J., Zhang, J., Jiang, N., Chu, X. J., et al. (2014). Discovery of potent and selective spiroindolinone MDM2 inhibitor, RO8994, for cancer therapy. Bioorganic & Medicinal Chemistry, 22, 4001–4009.CrossRefGoogle Scholar
  97. Zhao, L., Cannons, J. L., Anderson, S., Kirby, M., Xu, L., Castilla, L. H., et al. (2007). CBFB-MYH11 hinders early T-cell development and induces massive cell death in the thymus. Blood, 109, 3432–3440.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhao, L., Melenhorst, J. J., Alemu, L., Kirby, M., Anderson, S., Kench, M., et al. (2012). KIT with D816 mutations cooperates with CBFB-MYH11 for leukemogenesis in mice. Blood, 119, 1511–1521.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zhao, Y., Yu, S., Sun, W., Liu, L., Lu, J., Mceachern, D., et al. (2013). A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. Journal of Medicinal Chemistry, 56, 5553–5561.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Molecular Physiology and BiophysicsUniversity of Virginia Medical SchoolCharlottesvilleUSA

Personalised recommendations