Skip to main content

3D Dynamic Thermography System for Biomedical Applications

  • Chapter
  • First Online:
Application of Infrared to Biomedical Sciences

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

3D thermography systems that combine 3D geometric data and 2D thermography data enable users to have a more accurate representation of the surface temperature distribution and aid in its interpretation. A system for 3D dynamic infrared thermography comprising two units is presented; each unit consists of an off-the-shelf depth camera rigidly mounted to a FLIR thermal camera. The units are fixed on the arms of the device that allow their placement in desired positions near the subject. To generate a single 3D thermogram, the data obtained from the depth cameras is registered with the images from the thermal cameras. The process of generating a 3D thermogram is repeated several times while thermally stimulating the surface of the subject to produce a series of 3D thermograms. The developed system provides a number of advantages in research for biomedical applications, such as the correct temperature measurements on curved surfaces, the possibility to select regions of interest by taking into account the shape of the subject and the possibility to use the 3D data to easily eliminate the background from 2D thermograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ammer, K.: Thermography 2015—a computer-assisted literature survey. Thermol. Int. 26(1), 5–42 (2016)

    Google Scholar 

  2. Lahiri, B., Bagavathiappan, S., Jayakumar, T., Philip, J.: Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55(4), 221–235 (2012)

    Article  Google Scholar 

  3. Kaczmarek, M., Nowakowski, A.: Active IR-thermal imaging in medicine. J. Nondestr. Eval. 35(1), 1–16 (2016)

    Article  Google Scholar 

  4. Saniei, E., Setayeshi, S., Akbari, M.E., Navid, M.: A vascular network matching in dynamic thermography for breast cancer detection. Quant. InfraRed Thermogr. J. 12(1), 24–36 (2015)

    Article  Google Scholar 

  5. Renkielska, A., Kaczmarek, M., Nowakowski, A., Grudziński, J., Czapiewski, P., Krajewski, A., Grobelny, I.: Active dynamic infrared thermal imaging in burn depth evaluation. J. Burn Care Res., 1 (2014). doi:10.1097/BCR.0000000000000059

  6. Godoy, S.E., Ramirez, D.A., Myers, S.A., von Winckel, G., Krishna, S., Berwick, M., Padilla, R.S., Sen, P., Krishna, S.: Dynamic infrared imaging for skin cancer screening. Infrared Phys. Technol. 70, 147–152 (2015)

    Article  Google Scholar 

  7. Weum, S., Mercer, J.B., de Weerd, L.: Evaluation of dynamic infrared thermography as an alternative to CT angiography for perforator mapping in breast reconstruction: a clinical study. BMC Med. Imag. 16, 43 (2016)

    Article  Google Scholar 

  8. Watmough, D.J., Fowler, P.W., Oliver, R.: The thermal scanning of a curved isothermal surface: implications for clinical thermography. Phys. Med. Biol. 15(1), 1 (1970)

    Article  Google Scholar 

  9. Sawicki, P., Stein, R., Wiecek, B.: Directional emissivity correction by photogrammetric 3D object reconstruction. Quant. InfraRed Thermogr. 1998-052, 327–332 (1998). http://qirt.org/archives/qirt1998/papers/052.pdf

  10. Wiecek, B., Zwolenik, S., Jung, A., Zuber, J.: Advanced thermal, visual and radiological image processing for clinical diagnostics. In: Proceedings of the First Joint Engineering in Medicine and Biology, 1999. 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society BMES/EMBS Conference, vol. 2, p. 1108 (1999)

    Google Scholar 

  11. Hilsenstein, V.: Surface reconstruction of water waves using thermographic stereo imaging. In: Image and Vision Computing New Zealand, vol. 2. Citeseer (2005)

    Google Scholar 

  12. Prakash, S., Lee, P.Y., Caelli, T.: 3D mapping of surface temperature using thermal stereo. In: 2006 9th International Conference on Control, Automation, Robotics and Vision (2006). doi:10.1109/icarcv.2006.345342

  13. Prakash, S., Lee, P.Y., Caelli, T., Raupach, T.: Robust Thermal Camera Calibration and 3D Mapping of Object Surface Temperatures, p. 62050J (2006). doi:10.1117/12.668459

  14. Prakash, S., Lee, P.Y., Robles-Kelly, A.: Stereo techniques for 3D mapping of object surface temperatures. Quant. InfraRed Thermogr. J. 4(1), 63–84 (2007)

    Article  Google Scholar 

  15. Sella, T., Sklair-Levy, M., Cohen, M., Rozin, M., Shapiro-Feinberg, M., Allweis, T., Libson, E., Izhaky, D.: A novel functional infrared imaging system coupled with multiparametric computerised analysis for risk assessment of breast cancer. Eur. Radiol. 23(5), 1191–1198 (2013). doi:10.1007/s00330-012-2724-7

    Article  Google Scholar 

  16. Mirabella, C., Bellandi, S., Graziani, G., Tolomei, L., Manetti, L., Fortuna, D.: Hemodynamic 3D infrared thermal stereoscopic imaging (TSI) investigation in chronic vascular leg ulcers: a feasibility study. Wounds Compendium Clin. Res. Pract. 23(9), 276–284 (2011)

    Google Scholar 

  17. Ng, H.Y.M., Du, R.: Acquisition of 3D surface temperature distribution of a car body. In: 2005 IEEE International Conference on Information Acquisition, pp. 16–20. IEEE (2005). doi:10.1109/ICIA.2005.1635046

  18. Szeliski, R.: Rapid Octree Construction from Image Sequences. CVGIP: Image Underst. 58(1), 23–32 (1993)

    Google Scholar 

  19. Chen, C.Y., Yeh, C.H., Chang, B.R., Pan, J.M.: 3D reconstruction from IR thermal images and reprojective evaluations. In: Mathematical Problems in Engineering, pp. 1–8 (2015)

    Google Scholar 

  20. An, Y., Zhang, S.: High-resolution, real-time simultaneous 3D surface geometry and temperature measurement. Opt. Expr. 24(13), 14552 (2016)

    Google Scholar 

  21. Grubišić, I.: Medical 3D thermography system. Periodicum Biologorum 113(4), 401–406 (2011)

    Google Scholar 

  22. Soldan, S.: On extended depth of field to improve the quality of automated thermographic measurements in unknown environments. Quant. InfraRed Thermogr. J. 9(2), 135–150 (2012)

    Article  Google Scholar 

  23. Aksenov, P., Clark, I., Grant, D., Inman, A., Vartikovski, L., Nebel, J.C.: 3D thermography for quantification of heat generation resulting from inflammation. In: 3D Modelling Symposium. Citeseer (2003)

    Google Scholar 

  24. Ju, X., Nebel, J.C., Siebert, J.P.: 3D thermography imaging standardization technique for inflammation diagnosis. In: Photonics Asia 2004, pp. 266–273. International Society for Optics and Photonics (2005)

    Google Scholar 

  25. Chen, S., Li, Y.F., Wang, W., Zhang, J.: Active Sensor Planning for Multiview Vision Tasks, vol. 1. Springer (2008)

    Google Scholar 

  26. Xiao, H., Zhang, Y., Wang, A.: Multispectral three-dimensional digital infrared thermal imaging. Opt. Eng. 42(4), 906–911 (2003)

    Article  Google Scholar 

  27. Barone, S., Paoli, A., Razionale, A.V.: A biomedical application combining visible and thermal 3D imaging. In: XVIII Congreso internactional de Ingenieria Grafica, Barcelona, pp. 1–9 (2006)

    Google Scholar 

  28. Barone, S., Paoli, A., Razionale, A.V.: Assessment of chronic wounds by three-dimensional optical imaging based on integrating geometrical, chromatic, and thermal data. Proc. Inst. Mech. Eng. 225(2), 181–193 (2011)

    Article  Google Scholar 

  29. Yang, R., Chen, Y.: Design of a 3D infrared imaging system using structured light. IEEE Trans. Instrum. Meas. 60(2), 608–617 (2011)

    Article  Google Scholar 

  30. Cheng, V.S., Bai, J., Chen, Y.: A high-resolution three-dimensional far-infrared thermal and true-color imaging system for medical applications. Med. Eng. Phys. 31(9), 1173–1181 (2009)

    Article  Google Scholar 

  31. Sun, J., Ma, H., Zeng, D.: Three-dimensional infrared imaging method based on binocular stereo vision. Opt. Eng. 54(10), 103, 111 (2015)

    Google Scholar 

  32. Rangel, J., Soldan, S., Kroll, A.: 3D thermal imaging: fusion of thermography and depth cameras. In: International Conference on Quantitative InfraRed Thermography (2014)

    Google Scholar 

  33. Skala, K., Lipić, T., Sović, I., Gjenero, L., Grubišić, I.: 4D thermal imaging system for medical applications. Periodicum Biologorum 113(4), 407–416 (2011)

    Google Scholar 

  34. Müller, A.O., Kroll, A.: On the temperature assignment problem and the use of confidence textures in the creation of 3D thermograms. In: 2015 9th International Conference on Sensing Technology (ICST), pp. 223–228 (2015)

    Google Scholar 

  35. Vidas, S., Moghadam, P.: Heatwave: a handheld 3D thermography system for energy auditing. Energy Build. 66, 445–460 (2013)

    Article  Google Scholar 

  36. Vidas, S., Moghadam, P., Bosse, M.: 3D thermal mapping of building interiors using an RGB-D and thermal camera. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 2311–2318 (2013)

    Google Scholar 

  37. Vidas, S., Moghadam, P., Sridharan, S.: Real-time mobile 3D temperature mapping. IEEE Sens. J. 15(2), 1145–1152 (2015)

    Article  Google Scholar 

  38. Moghadam, P., Vidas, S.: Heatwave: The Next Generation of Thermography Devices, pp. 91050F (2014). doi:10.1117/12.2053950

  39. de Souza, M.A., Krefer, A.G., Borba, G.B., Centeno, T.M., Gamba, H.R.: Combining 3D models with 2D infrared images for medical applications. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2395–2398. IEEE (2015)

    Google Scholar 

  40. Wang, Y., Li, Y., Zheng, J.: A camera calibration technique based on opencv. In: 2010 3rd International Conference on Information Sciences and Interaction Sciences (ICIS), pp. 403–406. IEEE (2010)

    Google Scholar 

  41. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)

    Google Scholar 

  42. Berger, M., Tagliasacchi, A., Seversky, L., Alliez, P., Levine, J., Sharf, A., Silva, C.: State of the art in surface reconstruction from point clouds. Eurogr. Star Rep. 1, 161–185 (2014)

    Google Scholar 

  43. Horny, N.: FPA camera standardisation. Infrared Phys. Technol. 44(2), 109–119 (2003)

    Article  Google Scholar 

  44. Jones, B.F.: A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans. Med. Imag. 17(6), 1019–1027 (1998)

    Article  Google Scholar 

  45. Fuchs, M., Tanner, C.B.: Infrared thermometry of vegetation. Agron. J. 58(6), 597–601 (1966)

    Article  Google Scholar 

  46. Li, L.: Time-of-flight camera—an introduction. Technical white paper, May (2014)

    Google Scholar 

  47. Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: A gentle introduction to bilateral filtering and its applications. In: ACM SIGGRAPH 2007 Courses, p. 1. ACM (2007)

    Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support from CONACyT (Mexico) under grant 213208, from Convocatoria “Proyectos de desarrollo cientifco para atender problem as nacionales, 2013” and under grant 222496, from Convocatoria “Programa de Estímulos a la Innovación, 2015.” We also wish to thank C. Dávila Peralta and R. Rodriquez Carvajal for active participation in part of these projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chernov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chernov, G., Chernov, V., Barboza Flores, M. (2017). 3D Dynamic Thermography System for Biomedical Applications. In: Ng, E., Etehadtavakol, M. (eds) Application of Infrared to Biomedical Sciences. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-3147-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3147-2_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3146-5

  • Online ISBN: 978-981-10-3147-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics