Advertisement

Infrared Thermal Mapping, Analysis and Interpretation in Biomedicine

  • Arul N. Selvan
  • Charmaine ChildsEmail author
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

Measurement of body temperature is one of the cornerstones of clinical assessment in medicine. Skin, the largest organ of the human body, is essentially a temperature mosaic determined by the rate of blood flow through arterioles and capillaries adjacent to the skin . This makes the conventional methods of ‘spot’ measurement rather limited in providing detailed information of regional skin temperature. Infrared (IR) thermal imaging however has the potential to provide a robust method of surface temperature mapping in disease states where pathology disturbs the ‘normal’ distribution of blood flow to skin. To advance image interpretation from the conventional qualitative narrative to a quantitative and robust system, analytical developments focus on digital images and require computer-aided systems to produce results rapidly and safely. Hierarchical clustering-based segmentation (HCS) provides a generic solution to the complex interpretation of thermal data (pixel by pixel) to produce clusters and boundary regions at levels not discernible by human visual processing. In this chapter, HCS has been used to aid the interpretation of wound images and to identify variations in temperature clusters around and along the surgical wound for their clinical relevance in wound infection .

Keywords

Infrared Temperature Thermal mapping Wound infection Image analysis Hierarchical Clustering-based Segmentation (HCS) Isotherm Boundary outlining 

Notes

Acknowledgements

Our grateful thanks to Dr. Jon Willmott, Senior Lecturer in Sensor Systems, University of Sheffield UK, for his constructive comments during the preparation of this manuscript.

We would also like to thank the Machine Learning and Signal Processing Group, Centre of Telecommunication Research and Innovation (CeTRI), Universiti Teknikal Malaysia, Melaka (UTeM) for their contribution in providing the service of their High Performance RAM farm system for processing the thermal images.

References

  1. 1.
    Arbelaez, P.: Boundary extraction in natural images using ultrametric contour maps. In: Proceedings 5th IEEE Workshop on Perceptual Organization in Computer Vision (POCV’06), New York, USA, June 2006 (2006)Google Scholar
  2. 2.
    Arbelaez, P., Fowlkes, C., Martin, D.: The Berkeley segmentation dataset and benchmark June, 2007 (2007). http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. Accessed 24 June 2016
  3. 3.
    Aschoff, J., Wever, R.: Cited in Stainer MW, Mount LE, Blight J. Energy balance and temperature regulation. Cambridge University Press, 1984 (1958)Google Scholar
  4. 4.
    Bal, A., Alam, A.S.: Automatic target tracking in FLIR image sequences using intensity variation function and template modelling. IEEE Trans. Instrum. Meas. 54(5), 846–852 (2005)CrossRefGoogle Scholar
  5. 5.
    Bharara, M., Schoess, J., Nouvong, A., Armstong, D.G.: Wound inflammatory index: a “proof of concept” study to assess wound healing trajectory. J. Diabet. Sci. Technol. 4(4), 773–779 (2010)CrossRefGoogle Scholar
  6. 6.
    Budzan, S., Wyzgolik, R.: Remarks on noise removal in infrared images. Measur. Autom. Monitor. 61(06) (2015)Google Scholar
  7. 7.
    Childs, C., Hiltunen, Y., Vidyasagar, R., Kauppinen, R.A.: Determination of regional brain temperature using proton magnetic resonance spectroscopy to access brain-body temperature differences in healthy human subjects. Magn. Reson. Med. 56, 1–9 (2006)CrossRefGoogle Scholar
  8. 8.
    Childs, C., Shen, L.: Regional Pressure and temperature variations across the injured human brain: comparisons between intraparenchymal and ventricular measurements. Crit. Care 19, 267 (2015). doi: 10.1186/s13054-015-0982-x CrossRefGoogle Scholar
  9. 9.
    Childs, C., Wang, L., Neoh, B.K., Goh, H.K., Zu, M.M., Aung, P.W., Yeo, T.T.: Multi-parameter brain tissue microsensor and interface systems calibration, reliability and user experiences of pressure and temperature sensors in the setting of neurointensive care. J. Med. Eng. Technol. Early Online, 1–12 (2014). doi: 10.3109/03091902.2014.937834
  10. 10.
    Childs, C., Siraj, M.R., Fair, F.J., Selvan, A.N., Soltani, H., Wilmott, J., Farrell, T.: Thermal territories of the abdomen after caesarean section birth: infrared thermography and analysis approaches to surgical site assessment. J. Wound Care 25(9), 499–512 (2016)Google Scholar
  11. 11.
    Diakides, N.A., Bronzino, J.D. (eds): Medical infrared imaging. CRC Press ISBN 9780849390272 (2008)Google Scholar
  12. 12.
    Dougherty, G.: Digital Image Processing for Medical Applications. Cambridge University Press (2009)Google Scholar
  13. 13.
    Duarte, A., Carrão, L., Espanha, M., Vianad, T., Freitas, D., Bártolod, P., Fariaa, P., Almeidaa, H.A.: Segmentation algorithms for thermal images. Procedia Technol. 16, 1560–1569 (2014)CrossRefGoogle Scholar
  14. 14.
    Fountas, K.N., Kapsalaki, E.Z., Felets, C.H., Smisson III, H.F., Johnston, K.W., Robinson, J.S.: Intracranial temperature: Is it different throughout the brain? Neurocritical Care 4(2):195–200 (2004)Google Scholar
  15. 15.
    Frize, M., Karsh, J., Herry, C., Adéa, C., Aleem, I., Payeur, P.: Preliminary results of severity of illness measures of rheumatoid arthritis using infrared imaging. In: MeMeA 2009—International Workshop on Medical Measurements and Applications Cetraro, Italy May 29–30, 2009 (2009)Google Scholar
  16. 16.
    Griffin, L.D., Colchester, A.C.F., Roll, S.A., Studholme, C.S.: Hierarchical segmentation satisfying constraints. In: British Machine Vision Conference, UK,1994 (1994)Google Scholar
  17. 17.
    Henane, R., Bittel, J., Bansillon, V.: Partitional calorimetry measurements of energy exchange in severely burned patients. Burns 7(3), 180–189 (1981)CrossRefGoogle Scholar
  18. 18.
    Kapoor, P., Prasad, S.V.A.V., Patni, S.: Image segmentation and asymmetry analysis of breast thermograms for tumor detection. Int. J. Comput. Appl. 50 (2012)Google Scholar
  19. 19.
    Lawson, R.: Implications of surface temperatures in the diagnosis of breast cancer. Can. Med. Assoc. J. 75 (1956)Google Scholar
  20. 20.
    Leando, P.: Digital infrared thermal imaging (DITI) for referring health care practitioners. Meditherm Inc. (2003)Google Scholar
  21. 21.
    Lefrant, J.-Y., Muller, L., Emmanuel Coussaye, J., Benbabaali, M., Lebris, C., Zeitoun, N., Mari, C., Saissi, G., Ripart, J., Eledjam, J.-J.: Temperature measurement in intensive care patients: comparison of urinary bladder, oesophageal, rectal, axillary, and inguinal methods versus pulmonary artery core temperature. Intensiv. Care Med. 29, 414–418 (2003)CrossRefGoogle Scholar
  22. 22.
    Matthews, J.D., Forsythe, A.V., Brady, Z., Butler, M.W., Georgen, S.K., Byrnes, G.B., Giles, G.G., Wallace, A.B., Anderson, P.R., Guiver, T.A., McGale, P., Cain, T.M., Dowty, G.J.G., Bickerstaffe, A.C., Darby, S.C.: Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346, f2360 (2013)CrossRefGoogle Scholar
  23. 23.
    Nadler, M., Smith, E.P.: Pattern Recognition Engineering. Wiley, New York (1993)Google Scholar
  24. 24.
    Nowakowski, A., Kaczmarek, M., Moderhak, M., Siondalski, P.: Thermal imaging in wound healing diagnostics. Measur. Autom. Monitor. 61(06) (2015)Google Scholar
  25. 25.
    Ohlander, R., Price, K., Reddy, R.: Picture segmentation by a recursive region splitting method. Comput. Graph. Image Process. 8, 313–333 (1978)CrossRefGoogle Scholar
  26. 26.
    Pearce, M.S., Salotti, J.A., Little, M.P., McHugh, K., LeeC, Kim K.P., deGonzalez, A.B., et al.: Radiation exposure form CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380, 499–505 (2012)CrossRefGoogle Scholar
  27. 27.
    Sacho, R.S., Childs, C.: The significance of altered temperature after traumatic brain injury: an analysis of investigations in experimental and human studies: Part 2. Br. J. Neurosurg. 22(4), 497–507 (2008)CrossRefGoogle Scholar
  28. 28.
    Selvan, A.N.: Highlighting dissimilarity in medical images using hierarchical clustering-based segmentation (HCS). MPhil. Dissertation, Faculty of Arts Computing Engineering and Sciences, Sheffield Hallam University, Sheffield, UK (2007)Google Scholar
  29. 29.
    Selvan, A.N.: Boundary extraction in images using hierarchical clustering-based segmentation (HCS). In: British Machine Vision Conference (Student workshop) Dundee, UK, Sept 2011 (2011)Google Scholar
  30. 30.
    Selvan, A.N.: Hierarchical clustering-based segmentation (HCS) aided diagnostic image interpretation and monitoring. Doctoral Dissertation, Faculty of Arts Computing Engineering and Sciences, Sheffield Hallam University, Sheffield, UK (2012)Google Scholar
  31. 31.
    Selvan, A.N., Saatchi, R., Ferris, C.M.: Improving medical image perception by hierarchical clustering based segmentation. In: 9th International Conference on Information Technology and Applications in Biomedicine, Larnaka, Cyprus, 4–7 Nov 2009 (2009)Google Scholar
  32. 32.
    Selvan, A.N., Saatchi, R., Ferris, C.M.: Computer aided monitoring of breast abnormalities in X-ray mammograms. In: Medical Image Understanding and Analysis Conference, London, UK (2011)Google Scholar
  33. 33.
    Selvan, A.N., Pettitt, S., Wright, C.: Hierarchical clustering-based segmentation (HCS) aided interpretation of the DCE MR images of the prostate. In: Medical Image Understanding and Analysis Conference, Lincoln, UK, July 2015 (2015)Google Scholar
  34. 34.
    Siah, C.J.R., Childs, C.: Thermographic mapping of the abdomen in healthy subjects and patients after enterostoma. J. Wound Care 24(3) (2015)Google Scholar
  35. 35.
    Snekhalatha, U., Anburajan, M., Sowmiya, V., Venkatraman, B., Menaka, M.: Automated hand thermal image segmentation and feature extraction in the evaluation of rheumatoid arthritis. Proc. Inst. Mech. Eng. [H] 229(4), 319–331 (2015)CrossRefGoogle Scholar
  36. 36.
    Soukup, J., Rieger, C., Holz, C., Miko, I., Nemeth, N., Menzel, M.: Temperature gradient between brain tissue and arterial bloof mirrors the flow-metabolism relationship in uninjured brain: an experimental study. Acta Anaesthesiol. Scand. 51, 872–879 (2007)CrossRefGoogle Scholar
  37. 37.
    Tilton, J.C.: Hierarchical image segmentation. On-line Journal of Space Communication Issue No. 3 Winter 2003 Research and Applications (2003)Google Scholar
  38. 38.
    Tilton, J.C.: Hierarchical image segmentation (2016). http://science.gsfc.nasa.gov/606.3/TILTON/hseg.html. Accessed 11 Aug 2016
  39. 39.
    Vardasca, R., Bajwa, U.: Segmentation and noise removal on thermographic images of hands. Thermol. Int. 18(3), 99–104 (2008)Google Scholar
  40. 40.
    Vardasca, R., Gabriel, J., Jones, C.D., Plassmann, P., Ring, E.F.J.: A template based method for normalizing thermal images of the human body. In: The 12th International Conference on Quantitative infrared Thermography, at Bordeaux, France, 2014 (2014)Google Scholar
  41. 41.
    van Walraven, C., Musselman, R.: The surgical site infection risk score (SSIRS): a model to predict the risk of surgical site infections. PLoS ONE 8(6), e67167 (2013). doi: 10.1371/journal.pone.0067167. (Editor: Emma S. McBryde, Royal Melbourne Hospital)CrossRefGoogle Scholar
  42. 42.
    Wiecek, M., Strkowski, R., Jakubowska, T., Wicek, B.: Software for classification of thermal imaging for medical applications (2016). https://www.researchgate.net/publication/237215535_Software_for_classification_of_thermal_imaging_for_medical_applications. Accessed 24 May 2016
  43. 43.
    Wilson, A.P., Treasure, T., Sturridge, M.F., Gruneberg, R.N.: A scoring method (ASEPSIS) for postoperative wound infections for use in clinical trials of antibiotic prophylaxis. Lancet 1(8476), 311–313 (1986)CrossRefGoogle Scholar
  44. 44.
    Zhou, Q., Li, Z., Aggarwal, J.K.: Boundary extraction in thermal images by edge map. In: ACM Symposium on Applied Computing SAC’04, Nicosia, Cyprus March 14–17 (2004)Google Scholar
  45. 45.
    Zhu, M., Ackerman, J.J.H., Sukstanskii, A.L., Yablonskiy, D.A.: How the body controls brain temperature: the temperature shielding effect of cerebral blood flow. J. Appl. Physiol. 101:1481–1488 (2006). First published Jul 13. doi: 10.1152/japplphysiol.00319.2006

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Materials and Engineering Research InstituteSheffield Hallam UniversityCity CampusUK
  2. 2.Centre for Health and Social Care ResearchSheffield Hallam UniversitySheffieldUK

Personalised recommendations