Learning Without Storing: Wittgenstein’s Cognitive Science of Learning and Memory

  • Ian O’LoughlinEmail author


Education has recently been shaped by the cognitive science of memory. In turn, the science of memory has been infused by revolutionary ideas found in Wittgenstein’s works. However, the memory science presently applied to education draws mainly on traditional models that are quickly becoming outmoded; Wittgenstein’s insights have yet to be fruitfully applied, though they have helped to develop the science of memory. In this chapter, I examine three Wittgensteinian reforms in memory science as they pertain to education . First, Wittgenstein has inspired a particular strain of enactive models of memory and cognition, with important implications for theories of situated learning in education. Second, researchers have begun modeling memory as public practice , which deeply informs, inter alia, fraught theoretical discussions of assessment. Third, a number of memory researchers have rejected models based on a stored trace, a fundamental, Wittgensteinian revision with broad implications for characterizations of learning.


Memory science Situated learning Situated cognition Assessment Computationalism 


  1. Anderson, J. (2000). Learning and memory. Hoboken, NJ: Wiley.Google Scholar
  2. Anderson, J., Reder, L. M., & Simon, H. A. (1996). Situated learning and education. Educational Researcher, 25(4), 5–11.CrossRefGoogle Scholar
  3. Astin, A. W. (2012). Assessment for excellence: The philosophy and practice of assessment and evaluation in higher education. Lanham, MD: Rowman & Littlefield Publishers.Google Scholar
  4. Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability (Formerly: Journal of Personnel Evaluation in Education), 21(1), 5–31.Google Scholar
  5. Blakemore, S.-J., & Frith, U. (2005). The learning brain: Lessons for education. Oxford, UK: Blackwell Publishing.Google Scholar
  6. Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26(3–4), 369–398.CrossRefGoogle Scholar
  7. Boncompagni, A. (2013). Enactivism and the explanatory trap: A Wittgensteinian perspective. Methode-Analytic Perspectives, 2(2), 27–49.Google Scholar
  8. Brockmeier, J. (2010). After the archive: Remapping memory. Culture & Psychology, 16(1), 5–35.CrossRefGoogle Scholar
  9. Brown, J. H. (1968). An uncommon type of transient loss of memory. Canadian Medical Association Journal, 98(18), 878.Google Scholar
  10. Cowan, N. (2014). Working memory underpins cognitive development, learning, and education. Educational Psychology Review, 26(2), 197–223.CrossRefGoogle Scholar
  11. D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 761–772.CrossRefGoogle Scholar
  12. Dudai, Y. (2007). Persistence. In H. Roediger, Y. Dudai, & S. M. Fitzpatrick (Eds.), Science of memory: Concepts (p. 191). Oxford, UK: Oxford University Press.Google Scholar
  13. Fenesi, B., Sana, F., Kim, J. A., & Shore, D. I. (2014). Reconceptualizing working memory in educational research. Educational Psychology Review, 27(2), 333–351.CrossRefGoogle Scholar
  14. Freire, P. (2000). Pedagogy of the oppressed. London, UK: Bloomsbury Publishing.Google Scholar
  15. Friedlander, M. J., Andrews, L., Armstrong, E. G., Aschenbrenner, C., Kass, J. S., Ogden, P., … Viggiano, T. R. (2011). What can medical education learn from the neurobiology of learning? Academic Medicine, 86(4), 415–420.Google Scholar
  16. Gardiner, F. M., Craik, F. I., & Bleasdale, F. A. (1973). Retrieval difficulty and subsequent recall. Memory & Cognition, 1(3), 213–216.CrossRefGoogle Scholar
  17. Hark, M. (1995). Electric brain fields and memory traces: Wittgenstein and Gestalt psychology. Philosophical Investigations, 18(2), 113–138.CrossRefGoogle Scholar
  18. Harré, R., & Tissaw, M. A. (2005). Wittgenstein and psychology: A practical guide. London, UK: Gower Publishing Ltd.Google Scholar
  19. Hoffmann, J. (2010). Speculations on the origin of STM. Psychologica Belgica, 50(3–4), 175–191.CrossRefGoogle Scholar
  20. Hutto, D. D. (2009). Lessons from Wittgenstein: Elucidating folk psychology. New Ideas in Psychology, 27(2), 197–212.CrossRefGoogle Scholar
  21. Karpicke, J. D., & Roediger, H. L. (2008). The critical importance of retrieval for learning. Science, 319(5865), 966–968.CrossRefGoogle Scholar
  22. Kryukov, V. I. (2008). The role of the hippocampus in long-term memory: Is it memory store or comparator? Journal of Integrative Neuroscience, 7(01), 117–184.CrossRefGoogle Scholar
  23. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  24. Li, G., Ramanathan, K., Ning, N., Shi, L., & Wen, C. (2015). Memory dynamics in attractor networks. Computational Intelligence and Neuroscience, 2015(36).Google Scholar
  25. McDaniel, M. A., & Masson, M. E. (1985). Altering memory representations through retrieval. Journal of Experimental Psychology. Learning, Memory, and Cognition, 11(2), 371.CrossRefGoogle Scholar
  26. Michaelian, K. (2011). Generative memory. Philosophical Psychology, 24(3), 323–342.CrossRefGoogle Scholar
  27. Michaelian, K., & Sutton, J. (2013). Distributed cognition and memory research: History and current directions. Review of Philosophy and Psychology, 4(1), 1–24.CrossRefGoogle Scholar
  28. Moscovitch, M. (2007). Memory: Why the engram is elusive. In H. Roediger, Y. Dudai, & S. Fitzpatrick (Eds.), Science of memory: Concepts (pp. 17–21). Oxford, UK: Oxford University Press.Google Scholar
  29. Moyal-Sharrock, D. (2009). Wittgenstein and the memory debate. New Ideas in Psychology, 27(2), 213–227.CrossRefGoogle Scholar
  30. Nadel, L. (2007). Consolidation: The demise of the fixed trace. Science of memory: Concepts (pp. 177–181). Oxford, UK: Oxford University Press.Google Scholar
  31. Phye, G. D., & Pickering, S. J. (2006). Working memory and education. Oxford, UK: Academic Press.Google Scholar
  32. Randall, W. L. (2007). From computer to compost: Rethinking our metaphors for memory. Theory & Psychology, 17(5), 611–633.Google Scholar
  33. Roediger, H. L. (2007). Transfer: The ubiquitous concept. In H. Roediger, Y. Dudai, & S. M. Fitzpatrick (Eds.), Science of memory: Concepts (pp. 277–282). Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  34. Roediger, H. L., Dudai, Y., & Fitzpatrick, S. M. (2007). Science of memory concepts. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  35. Roediger, H. L., & McDermott, K. B. (2000). Distortions of memory. In E. Tulving & F. Craik (Eds.), The Oxford handbook of memory (pp. 149–162). Oxford, UK: Oxford University Press.Google Scholar
  36. Rohrer, D., & Pashler, H. (2010). Recent research on human learning challenges conventional instructional strategies. Educational Researcher, 39(5), 406–412.CrossRefGoogle Scholar
  37. Schacter, D. L. (2007). Memory: Delineating the core. In H. L. Roediger, Y. Dudai, & S. M. Fitzpatrick (Eds.), Science of memory: Concepts (pp. 23–27). Oxford, UK: Oxford University Press.Google Scholar
  38. Siegler, R. (2003). Implications of cognitive science research for mathematics education. A research companion to principles and standards for school mathematics (pp. 219–233).Google Scholar
  39. Smit, H. (2010). Weismann, Wittgenstein and the homunculus fallacy. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 41(3), 263–271.CrossRefGoogle Scholar
  40. Spencer, J. P., Thomas, M. S., & McClelland, J. L. (Eds.). (2009). Toward a unified theory of development. Oxford, UK: Oxford University Press.Google Scholar
  41. Stern, D. G. (1991). Models of memory: Wittgenstein and cognitive science. Philosophical Psychology, 4(2), 203–218.CrossRefGoogle Scholar
  42. Susswein, N., & Racine, T. P. (2009). Wittgenstein and not-just-in-the-head cognition. New Ideas in Psychology, 27(2), 184–196.CrossRefGoogle Scholar
  43. Sutton, J. (2014). Remembering as public practice: Wittgenstein, memory, and distributed cognitive ecologies. In Mind, Language, and Action: Proceedings of the 36th Wittgenstein Symposium.Google Scholar
  44. Toth, J. (2000). Nonconscious forms of human memory. In E. Tulving & F. Craik (Eds.), Oxford handbook of memory. Oxford, UK: Oxford University Press.Google Scholar
  45. Tulving, E. (2000). Concepts of memory. In E. Tulving & F. Craik (Eds.), The Oxford handbook of memory (pp. 33–43). Oxford, UK: Oxford University Press.Google Scholar
  46. Tulving, E. (2007). Coding and representation: Searching for a home in the brain. In H. L. Roediger, Y. Dudai, & S. M. Fitzpatrick (Eds.), Science of memory: Concepts (pp. 65–68). Oxford, UK: Oxford University Press.Google Scholar
  47. Wittgenstein, L. (1967). Zettel. Berkeley, CA: Univ of California Press (Z).Google Scholar
  48. Wittgenstein, L. (1974). Philosophical grammar. Berkeley, CA: University of California Press. Retrieved from (PG)
  49. Wittgenstein, L. (1982). Last writings on the philosophy of psychology (Vol. 1). Chicago, IL: University of Chicago Press (LW).Google Scholar
  50. Wittgenstein, L. (1988). Wittgenstein’s lectures on philosophical psychology, 1946–47. Chicago, IL: University of Chicago Press (LPP).Google Scholar
  51. Wittgenstein, L. (1991). The blue and brown books. New York, NY: Harper & Row (BB).Google Scholar
  52. Wittgenstein, L. (2010). Philosophical investigations. Hoboken, NJ: Wiley (PI).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of PhilosophyPacific UniversityForest GroveUSA

Personalised recommendations