Advertisement

Solar Cells: Materials Beyond Silicon

  • Soumyo Chatterjee
  • Uttiya Dasgupta
  • Amlan J. Pal
Conference paper

Abstract

Considering India’s inability to produce semiconductor grade silicon and correspondingly manufacturing of silicon solar cell modules, the prospects of other upcoming materials in third-generation solar cells have been discussed. Our outlook on solar cells based on conjugated organics, nanostructures of compound semiconductors, hybrids between two types of semiconductors, oxides, and newly-found organic-inorganic perovskites has been presented.

Keywords

Materials beyond silicon for solar cells Conjugated organics Inorganic nanostructured materials Organic-inorganic hybrids Perovskites Balance between conversion efficiency and manufacturing cost 

Notes

Acknowledgements

SC acknowledges DST INSPIRE Fellowship [IF140158]. UD acknowledges CSIR Junior Research Fellowship No. 09/080(0843)/2012-EMR-I (Roll No. 519699). The authors also acknowledge financial assistance from SERIIUS, DST, and DeitY projects.

References

  1. 1.
    C.W. Tang, 2-Layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183 (1986)CrossRefGoogle Scholar
  2. 2.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (Version 37). Prog. Photovoltaics 19, 84 (2011)CrossRefGoogle Scholar
  3. 3.
    D. Muhlbacher, M. Scharber, M. Morana, Z.G. Zhu, D. Waller, R. Gaudiana, C. Brabec, High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884 (2006)CrossRefGoogle Scholar
  4. 4.
    K. Kim, J. Liu, M.A.G. Namboothiry, D.L. Carroll, Roles of donor and acceptor nanodomains in 6 % Efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett. 90, 163511 (2007)CrossRefGoogle Scholar
  5. 5.
    N.C. Greenham, X.G. Peng, A.P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628 (1996)CrossRefGoogle Scholar
  6. 6.
    H.C. Chen, C.W. Lai, I.C. Wu, H.R. Pan, I.W.P. Chen, Y.K. Peng, C.L. Liu, C.H. Chen, P.T. Chou, Enhanced performance and air stability of 3.2 % hybrid solar cells: how the functional polymer and CdTe nanostructure boost the solar cell efficiency. Adv. Mater. 23, 5451 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Seo, M.J. Cho, D. Lee, A.N. Cartwright, P.N. Prasad, Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer. Adv. Mater. 23, 3984 (2011)CrossRefGoogle Scholar
  8. 8.
    O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J.B. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100 % via MEG in a quantum dot solar cell. Science 334, 1530 (2011)CrossRefGoogle Scholar
  9. 9.
    E. Arici, N.S. Sariciftci, D. Meissner, Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv. Funct. Mater. 13, 165 (2003)CrossRefGoogle Scholar
  10. 10.
    S.Q. Ren, N. Zhao, S.C. Crawford, M. Tambe, V. Bulovic, S. Gradecak, Heterojunction photovoltaics using gaas nanowires and conjugated polymers. Nano Lett. 11, 408 (2011)CrossRefGoogle Scholar
  11. 11.
    S.Q. Ren, L.Y. Chang, S.K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulovic, M. Bawendi, S. Gradecak, Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett. 11, 3998 (2011)CrossRefGoogle Scholar
  12. 12.
    S.D. Oosterhout, M.M. Wienk, S.S. van Bavel, R. Thiedmann, L.J.A. Koster, J. Gilot, J. Loos, V. Schmidt, R.A.J. Janssen, The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nat. Mater. 8, 818 (2009)CrossRefGoogle Scholar
  13. 13.
    Y.Y. Lin, T.H. Chu, S.S. Li, C.H. Chuang, C.H. Chang, W.F. Su, C.P. Chang, M.W. Chu, C.W. Chen, Interfacial nanostructuring on the performance of Polymer/TiO2 nanorod bulk heterojunction solar cells. J. Am. Chem. Soc. 131, 3644 (2009)CrossRefGoogle Scholar
  14. 14.
    U. Dasgupta, A. Bera, A.J. Pal, pn-Junction nanorods in a polymer matrix: a paradigm shift from conventional hybrid bulk-heterojunction solar cells. Sol. Energy Mater. Sol. Cells 143, 319 (2015)CrossRefGoogle Scholar
  15. 15.
    C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005)CrossRefGoogle Scholar
  16. 16.
    L. Brus, Electronic wave-functions in semiconductor clusters—experiment and theory. J. Phys. Chem. 90, 2555 (1986)CrossRefGoogle Scholar
  17. 17.
    I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J.C. Martins, Z. Hens, Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. ACS Nano 5, 2004 (2011)CrossRefGoogle Scholar
  18. 18.
    W.W. Yu, L.H. Qu, W.Z. Guo, X.G. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mat. 15, 2854 (2003)CrossRefGoogle Scholar
  19. 19.
    Z.X. Pan, K. Zhao, J. Wang, H. Zhang, Y.Y. Feng, X.H. Zhong, Near infrared absorption of CdSexTe1-x, alloyed quantum dot sensitized solar cells with more than 6 % efficiency and high stability. ACS Nano 7, 5215 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Shu, Z.M. Zhou, H. Wang, G.H. Liu, P. Xiang, Y.G. Rong, H.W. Han, Y.D. Zhao, Efficient quantum dot-sensitized solar cell with tunable energy band CdSexS(1-x) quantum dots. J. Mater. Chem. 22, 10525 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Stavrinadis, A.K. Rath, F.P.G. de Arquer, S.L. Diedenhofen, C. Magen, L. Martinez, D. So, G. Konstantatos, Heterovalent cation substitutional doping for quantum dot homojunction solar cells. Nat. Commun. 4, 2981 (2013)CrossRefGoogle Scholar
  22. 22.
    Y. Justo, P. Geiregat, K. Van Hoecke, F. Vanhaecke, C.D. Donega, Z. Hens, Optical properties of PbS/CdS Core/Shell quantum dots. J. Phys. Chem. C 117, 20171 (2013)CrossRefGoogle Scholar
  23. 23.
    H. Zhao, Z. Fan, H. Liang, G.S. Selopal, B.A. Gonfa, L. Jin, A. Soudi, D. Cui, F. Enrichi, M.M. Natile, I. Concina, D. Ma, A.O. Govorov, F. Rosei, A. Vomiero, Controlling photoinduced electron transfer from PbS@CdS Core@Shell quantum dots to metal oxide nanostructured thin films. Nanoscale 6, 7004 (2014)CrossRefGoogle Scholar
  24. 24.
    Z.X. Pan, I. Mora-Sero, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X.H. Zhong, J. Bisquert, High-efficiency “green” quantum dot solar cells. J. Am. Chem. Soc. 136, 9203 (2014)CrossRefGoogle Scholar
  25. 25.
    Z.J. Ning, H.N. Tian, C.Z. Yuan, Y. Fu, H.Y. Qin, L.C. Sun, H. Agren, Solar cells sensitized with Type-II ZnSe-CdS Core/Shell colloidal quantum dots. Chem. Commun. 47, 1536 (2011)CrossRefGoogle Scholar
  26. 26.
    P.T. Sheng, W.L. Li, J. Cai, X. Wang, X. Tong, Q.Y. Cai, C.A. Grimes, A novel method for the preparation of a photocorrosion stable Core/Shell CdTe/CdS Quantum Dot TiO2 nanotube array photoelectrode demonstrating an AM 1.5 G photoconversion efficiency of 6.12 %. J. Mater. Chem. A 1, 7806 (2013)CrossRefGoogle Scholar
  27. 27.
    P.K. Santra, P.V. Kamat, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5 %. J. Am. Chem. Soc. 134, 2508 (2012)CrossRefGoogle Scholar
  28. 28.
    S.A. McDonald, G. Konstantatos, S.G. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138 (2005)CrossRefGoogle Scholar
  29. 29.
    K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, M.A. Loi, PbS nanocrystal solar cells with high efficiency and fill factor. Appl. Phys. Lett. 97, 203501 (2010)CrossRefGoogle Scholar
  30. 30.
    G.H. Kim, F.P.G. de Arquer, Y.J. Yoon, X.Z. Lan, M.X. Liu, O. Voznyy, Z.Y. Yang, F.J. Fan, A.H. Ip, P. Kanjanaboos, S. Hoogland, J.Y. Kim, E.H. Sargent, High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Lett. 15, 7691 (2015)CrossRefGoogle Scholar
  31. 31.
    W.C. Hsu, H.P. Zhou, S. Luo, T.B. Song, Y.T. Hsieh, H.S. Duan, S.L. Ye, W.B. Yang, C.J. Hsu, C.Y. Jiang, B. Bob, Y. Yang, Spatial element distribution control in a fully solution-processed nanocrystals-based 8.6 % Cu2ZnSn(S,Se)4 device. ACS Nano 8, 9164 (2014)CrossRefGoogle Scholar
  32. 32.
    A.K. Rath, M. Bernechea, L. Martinez, F.P.G. de Arquer, J. Osmond, G. Konstantatos, Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells. Nat. Photonics 6, 529 (2012)CrossRefGoogle Scholar
  33. 33.
    I.J. Kramer, L. Levina, R. Debnath, D. Zhitomirsky, E.H. Sargent, Solar cells using quantum funnels. Nano Lett. 11, 3701 (2011)CrossRefGoogle Scholar
  34. 34.
    P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 Films Used in dye-sensitized solar cells. ACS Nano 5, 5158 (2011)CrossRefGoogle Scholar
  35. 35.
    J.B. Gao, C.L. Perkins, J.M. Luther, M.C. Hanna, H.Y. Chen, O.E. Semonin, A.J. Nozik, R.J. Ellingson, M.C. Beard, n-type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 11, 3263 (2011)CrossRefGoogle Scholar
  36. 36.
    N.H. Sun, G.J. Fang, P.L. Qin, Q.A. Zheng, M.J. Wang, X. Fan, F. Cheng, J.W. Wan, X.Z. Zhao, Bulk HETEROJUNCTION SOLAR CELLS With NiO hole transporting layer based on AZO anode. Sol. Energy Mater. Sol. Cells 94, 2328 (2010)CrossRefGoogle Scholar
  37. 37.
    C.T. Zuo, L.M. Ding, Solution-Processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small 11, 5528 (2015)CrossRefGoogle Scholar
  38. 38.
    K. Nakaoka, J. Ueyama, K. Ogura, Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrates. J. Electrochem. Soc. 151, C661 (2004)CrossRefGoogle Scholar
  39. 39.
    S. Masudy-Panah, G.K. Dalapati, K. Radhakrishnan, A. Kumar, H.R. Tan, E.N. Kumar, C. Vijila, C.C. Tan, D.Z. Chi, p-CuO/n-Si heterojunction solar cells with high open circuit voltage and photocurrent through interfacial engineering. Prog. Photovoltaics 23, 637 (2015)CrossRefGoogle Scholar
  40. 40.
    L.C. Olsen, F.W. Addis, W. Miller, Experimental and theoretical-studies of Cu2O solar-cells. Solar Cells 7, 247 (1982)CrossRefGoogle Scholar
  41. 41.
    A.O. Musa, T. Akomolafe, M.J. Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol. Energy Mater. Sol. Cells 51, 305 (1998)CrossRefGoogle Scholar
  42. 42.
    S. Chatterjee, A.J. Pal, Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J. Phys. Chem. C 120, 1428 (2016)CrossRefGoogle Scholar
  43. 43.
    Y.K. Hsu, J.R. Wu, M.H. Chen, Y.C. Chen, Y.G. Lin, Fabrication of homojunction Cu2O Solar Cells by electrochemical deposition. Appl. Surf. Sci. 354, 8 (2015)CrossRefGoogle Scholar
  44. 44.
    C.M. McShane, K.S. Choi, Junction studies on electrochemically fabricated p-n Cu2O homojunction solar cells for efficiency enhancement. Phys. Chem. Chem. Phys. 14, 6112 (2012)CrossRefGoogle Scholar
  45. 45.
    L.C. Olsen, R.C. Bohara, M.W. Urie, Explanation for low-efficiency Cu2O schottky-barrier solar-cells. Appl. Phys. Lett. 34, 47 (1979)CrossRefGoogle Scholar
  46. 46.
    T. Minami, Y. Nishi, T. Miyata, Heterojunction solar cell with 6 % efficiency based on an n-type Aluminum-Gallium-Oxide thin film and p-type Sodium-Doped Cu2O SHEET. Appl. Phys. Express 8, 022301 (2015)CrossRefGoogle Scholar
  47. 47.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  48. 48.
    T.B. Song, Q. Chen, H.P. Zhou, C.Y. Jiang, H.H. Wang, Y. Yang, Y.S. Liu, J.B. You, Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3, 9032 (2015)CrossRefGoogle Scholar
  49. 49.
    J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584 (2014)CrossRefGoogle Scholar
  50. 50.
    N.J. Jeon, H.G. Lee, Y.C. Kim, J. Seo, J.H. Noh, J. Lee, S.I. Seok, o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. J. Am. Chem. Soc. 136, 7837 (2014)CrossRefGoogle Scholar
  51. 51.
    H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014)CrossRefGoogle Scholar
  52. 52.
    J. Cui, F.P. Meng, H. Zhang, K. Cao, H.L. Yuan, Y.B. Cheng, F. Huang, M.K. Wang, CH3NH3PbI3-Based planar solar cells with magnetron-sputtered Nickel Oxide. ACS Appl. Mater. Interfaces 6, 22862 (2014)CrossRefGoogle Scholar
  53. 53.
    J.H. Kim, P.W. Liang, S.T. Williams, N. Cho, C.C. Chueh, M.S. Glaz, D.S. Ginger, A.K.Y. Jen, High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed Copper-Doped Nickel Oxide Hole-Transporting Layer. Adv. Mater. 27, 695 (2015)CrossRefGoogle Scholar
  54. 54.
  55. 55.
    Z.H. Liu, M. Zhang, X.B. Xu, L.L. Bu, W.J. Zhang, W.H. Li, Z.X. Zhao, M.K. Wang, Y.B. Cheng, H.S. He, p-type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans. 44, 3967 (2015)CrossRefGoogle Scholar
  56. 56.
    J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with Copper Iodide. J. Am. Chem. Soc. 136, 758 (2014)CrossRefGoogle Scholar
  57. 57.
    P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Gratzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4 % conversion efficiency. Nat. Commun. 5, (2014)Google Scholar
  58. 58.
    V. Trifiletti, V. Roiati, S. Colella, R. Giannuzzi, L. De Marco, A. Rizzo, M. Manca, A. Listorti, G. Gigli, NiO/MAPbI3-xClx/PCBM: a model case for an improved understanding of inverted mesoscopic solar cells. ACS Appl. Mater. Interfaces 7, 4283 (2015)CrossRefGoogle Scholar
  59. 59.
    Y.X. Zhao, A.M. Nardes, K. Zhu, Solid-state mesostructured perovskite CH3NH3PbI3 solar cells: charge transport, recombination, and diffusion length. J. Phys. Chem. Lett. 5, 490 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Soumyo Chatterjee
    • 1
  • Uttiya Dasgupta
    • 1
  • Amlan J. Pal
    • 1
  1. 1.Department of Solid State PhysicsIndian Association for the Cultivation of ScienceJadavpur, KolkataIndia

Personalised recommendations