A Unified Approach for Spatial and Angular Super-Resolution of Diffusion Tensor MRI

  • Shi Yin
  • Xinge You
  • Weiyong Xue
  • Bo Li
  • Yue Zhao
  • Xiao-Yuan Jing
  • Patrick S. P. Wang
  • Yuanyan Tang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 663)


Diffusion magnetic resonance imaging (dMRI) can provide quantitative information with which to visualize and study connectivity and continuity of neural pathways in nervous systems. However, the very subtle regions and multiple intra-voxel orientations of water diffusion in brain cannnot accurately be represented in low spatial resolution imaging with tensor model. Yet, the ability to trace and describe such regions is critical for some applications such as neurosurgery and pathologic diagnosis. In this paper, we proposed a new single image acquisition super-resolution method to increase both the spatial and angular resolution of dMRI. The proposed approach called single dMRI super-resolution reconstruction with compressed sensing (SSR-CS), uses a low number of single diffusion MRI in different gradients. This acquisition scheme is effectively in reducing acquisition time while improving the signal-to-noise ratio (SNR). The proposed method combines the two strategies of nonlocal similarity reconstruction and compressed sensing reconstruction in a sparse basis of spherical ridgelets to reconstruct high resolution image in k-space with complex orientations. The split Bregman approach is introduced for solving the SSR-CS problem. The performance of the proposed method is quantitatively evaluated on simulated diffusion MRI, using both spatial and angular reconstruction evaluating indexes. We also compared our method with some other dMRI super resolution methods.


Diffusion magnetic resonance imaging (dMRI) Tensor model Single dMRI super-resolution Compressed sensing (CS) Sparse representation 


  1. 1.
    Stieltjes, B., Brunner, R.M., Fritzsche, K., Laun, F.: Diffusion Tensor Imaging. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Eriksson, S.H., Rugg-Gunn, F.J.: Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 124, 617–626 (2001)CrossRefGoogle Scholar
  3. 3.
    Mori, S., van Zijl, P.: Fiber tracking: principles and strategies-a technical review. NMR Biomed. 15, 468–480 (2002)CrossRefGoogle Scholar
  4. 4.
    Coup, P., Manjn, J.V.: Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage 83, 245–261 (2013)CrossRefGoogle Scholar
  5. 5.
    Heidemann, R.M., Anwander, A.: k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7 T. NeuroImage 60(2), 967–978 (2012)CrossRefGoogle Scholar
  6. 6.
    Landman, B.A.: Resolution of crossing fibers with constrained compressed sensing using traditional diffusion tensor MRI. NeuroImage 59(3), 2175–2186 (2012)CrossRefGoogle Scholar
  7. 7.
    Scherrer, B., Gholipour, A., Warfield, S.K.: Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions. Med. Image Anal. 16, 1465–1476 (2012)CrossRefGoogle Scholar
  8. 8.
    Poot, D.H.J., Jeurissen, B.: Super-resolution for multislice diffusion tensor imaging. Magn. Reson. Med. 69, 103–113 (2013)CrossRefGoogle Scholar
  9. 9.
    Van Steenkiste, G., Jeurissen, B.: Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations. Magn. Reson. Med. 75, 181–195 (2015)CrossRefGoogle Scholar
  10. 10.
    Ning, L., Setsompop, K., Michailovich, O.: A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging. NeuroImage 125, 386–400 (2016)CrossRefGoogle Scholar
  11. 11.
    Stejskal, E., Tanner, J.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965)CrossRefGoogle Scholar
  12. 12.
    Jansons, K.M., Alexander, D.C.: Persistent angular structure: new insights from diffusion MRI data. Dummy version. In: Taylor, C., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 672–683. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45087-0_56 CrossRefGoogle Scholar
  13. 13.
    Michailovich, O., Rathi, Y.: On approximation of orientation distributions by means of spherical ridgelets. IEEE Trans. Image Process. 19(2), 461–477 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Michailovich, O., Rathi, Y., Dolui, S.: Spatially regularized compressed sensing for high angular resolution diffusion imaging. IEEE Trans. Med. Imaging, 30(5), 1100–1115 (2011)CrossRefGoogle Scholar
  15. 15.
    Manjn, J.V., Coup, P.: Non-local MRI upsampling. Med. Image Anal. 14(6), 784–792 (2010)CrossRefGoogle Scholar
  16. 16.
    Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Barmpoutis, A., Jian, B., Vemuri, B.C.: Adaptive kernels for multi-fiber reconstruction. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 338–349. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02498-6_28 CrossRefGoogle Scholar
  18. 18.
    Barmpoutis, A., Hwang, M.S.: Regularized positive-definite fourth order tensor field estimation from DW-MRI. NeuroImage 45, 153–162 (2009)CrossRefGoogle Scholar
  19. 19.
    Barmpoutis, A., Vemuri, B.C.: A unified framework for estimating diffusion tensors of any order with symmetric positive-definite constraints. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1385–1388. IEEE (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Shi Yin
    • 1
  • Xinge You
    • 1
  • Weiyong Xue
    • 1
  • Bo Li
    • 1
  • Yue Zhao
    • 1
  • Xiao-Yuan Jing
    • 2
  • Patrick S. P. Wang
    • 3
  • Yuanyan Tang
    • 4
  1. 1.School of Electronic Information and CommunicationsHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of ComputerWuhan UniversityWuhanChina
  3. 3.College of Computer and Information ScienceNortheastern UniversityBostonUSA
  4. 4.Faculty of Science and TechnologyUniversity of MacauMacauChina

Personalised recommendations