Molecular Markers and Marker-Assisted Selection in Crop Plants

  • Kamaluddin
  • M. A. Khan
  • Usha Kiran
  • Athar Ali
  • Malik Zainul Abdin
  • M. Y. Zargar
  • Shahid Ahmad
  • Parvej A. Sofi
  • Shazia Gulzar
Chapter

Abstract

Molecular markers have revolutionized the plant biotechnology and genetic studies because of their versatility. These markers include biochemical constituents like secondary metabolites and macromolecules, viz., proteins and deoxyribonucleic acids (DNA). The secondary metabolites are specific to particular plants species that produce them; therefore, the technique has a restricted application. Also, these are influenced by the environmental factors and/or management practices. The molecular markers based on the DNA polymorphism, however, are more suitable and ubiquitous to most of the plant species. These are stable and could not be influenced by environmental factors and/or management practices. Among the other applications of DNA markers, the most promising for plant breeding is marker-assisted selection (MAS). The application requires the markers to be linked with genes of economic significance, cost-effective, and applicable to large number of samples as well as a wide range of crosses in a breeding program. In this chapter, we review the literature about molecular markers, their advantages, disadvantages, and the applications of these markers in marker-assisted selection (MAS) in crop plants.

Keywords

Molecular markers Marker-assisted selection (MAS) Crop plants DNA polymorphism 

References

  1. Abdallah AA, Ali AM, Geiger HH et al (2009) Marker-assisted recurrent selection for increased out crossing in Caudatum–race Sorghum. International Conference on Applied Biotechnology (ICAB), 28–30th September; Sudan; 2009Google Scholar
  2. Abdin MZ, Jabeen MK, Khan S et al (2012) Development and detection efficiency of SCAR markers of Cuscuta reflexa and its adulterant Cuscuta chinensis. J Food Drug Anal 20:471Google Scholar
  3. Adam-Blondon AF, Sevignac M, Bannerot H et al (1994) SCAR, RAPD and RFLP markers linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theor Appl Genet 88:865–870PubMedCrossRefGoogle Scholar
  4. Allen AM, Barker GLA, Berry ST et al (2011) Transcript-specific, single nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1086–1099PubMedCrossRefGoogle Scholar
  5. Althoff DM, Gitzendanner MA, Segraves KA (2007) The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst Biol 56:477–484PubMedCrossRefGoogle Scholar
  6. Alwala S, Suman A, Arro JA et al (2006) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collection. Crop Sci 46:448–455CrossRefGoogle Scholar
  7. Aneja B (2010) Micronutrient and molecular diversity analysis in mungbean [Vigna radiata (L.) Wilczek] genotypes, M.Sc. thesis. CCSHAU, HisarGoogle Scholar
  8. Araujo LGD, Prabhu AS, Pereiral PAA et al (2010) Marker-assisted selection for the rice blast resistance gene Pi-ar in a backcross population. Crop Breed Appl Biotech 10:23–31CrossRefGoogle Scholar
  9. Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 11:344–350PubMedCrossRefGoogle Scholar
  10. Ashraf K, Ahmad A, Chaudhary A et al (2014) Genetic diversity analysis of Zingiber Officinale Roscoe by RAPD collected from subcontinent of India. Saudi Journal of Biological Sciences 21:159–165PubMedCrossRefGoogle Scholar
  11. Awasthi P, Ahmad I, Gandhi SG et al (2012) Development of chloroplast microsatellite markers for phylogenetic analysis in Brassicaceae. Acta Biol Hung 63(4):463–473PubMedCrossRefGoogle Scholar
  12. Babu R, Nair SK, Prasanna BM et al (2004) Integrating marker-assisted selection in crop breeding – prospects and challenges. Curr Sci 87(5):607–619Google Scholar
  13. Bachem CWB, Van der Hoeve RS, de Bruijn SM et al (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753PubMedCrossRefGoogle Scholar
  14. Bachem CWB, Oomen RJFJ, Visser GF (1998) Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Report 16:157CrossRefGoogle Scholar
  15. Barloy D, Lemoine J, Abelard P et al (2007) Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol Breed 20:31–40CrossRefGoogle Scholar
  16. Barrett B, Griffiths A, Mercer C et al (2001) Marker-assisted selection to accelerate forage improvement. Proceedings of the New Zealand Grassland Association 63:241–245Google Scholar
  17. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  18. Bernardo R, Yu J (2007) Prospects for genome wide selection for quantitative traits in maize. Crop Sci 47:1082–1090CrossRefGoogle Scholar
  19. Bernatzky R, Tanksley SD (1986) Towards a saturated linkage map of tomato based on isozymes and random cDNA sequences. Gen Dent 112:887–898Google Scholar
  20. Bharathkumar S, Paulraj RSD, Brindha PV et al (2008) Improvement of bacterial blight resistance in rice cultivars Jyothi and IR50 via marker-assisted backcross breeding. J Crop Improve 21:101–116CrossRefGoogle Scholar
  21. Bhawar KB, Sharma JBV, Singh AK et al (2011) Molecular marker assisted pyramiding of leaf rust resistance genes Lr19 and Lr28 in bread wheat (Triticum aestivum L.) variety HD2687. The Indian J Genet Plant Breed 71:304–311Google Scholar
  22. Bohn M, Groh S, Khairallah MM et al (2001) Re-evaluation of the prospects of marker-assisted selection for improving insect resistance against Diatraea spp. in tropical maize by cross validation and independent validation. Theor Appl Genet 103:1059–1067CrossRefGoogle Scholar
  23. Botstein D, White RL, Skolnick M et al (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  24. Branco CJ, Vieira EA, Malone G et al (2007) IRAP and REMAP assessments of genetic similarity in rice. J Appl Genet 48:107–113PubMedCrossRefGoogle Scholar
  25. Bucci G, Anzidei M, Madaghiele A et al (1998) Detection of haplotypic variation and natural hybridization in halepensiscomplex pine species using chloroplast simple sequence repeat (SSR) markers. Mol Ecol 7:1633–1643CrossRefGoogle Scholar
  26. Caetano-Anolle’s G, Bassam BJ (1993) DNA amplification fingerprinting using arbitrary oligonucleotide primers. Appl Biochem Biotechnol 42:189–200CrossRefGoogle Scholar
  27. Caetano-Anolle’s G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Biotechnology 9:553–557CrossRefGoogle Scholar
  28. Casa AM, Brouwer C, Nagel A et al (2000) The MITE family Heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci U S A 97:10083–10089PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chang RY, O’Donoughue LS, Bureau TE (2001) Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet 102:773–781CrossRefGoogle Scholar
  30. Charmet G, Robert N, Perretant MR et al (2001) Marker assisted recurrent selection for cumulating QTLs for bread-making related traits. Euphytica 119:89–93CrossRefGoogle Scholar
  31. Chelkowski J, Stepień L (2001) Molecular markers for leaf rust resistance genes in wheat. J Appl Genet 42:117–126PubMedGoogle Scholar
  32. Cheng HY, Yang WC, Hsiao JY (2001) Genetic diversity and relationship among peach cultivars based on Random Amplified Microsatellite Polymorphism (RAMP). Bot Bull Acad Sin 42:201–206Google Scholar
  33. Chhuneja P, Kaur S, Garg T et al (2008) Mapping of adult plant stripe rust resistance genes in diploid a genome wheat species and their transfer to bread wheat. Theor Appl Genet 116:313–324PubMedCrossRefGoogle Scholar
  34. Chial H (2008) DNA fingerprinting using amplified fragment length polymorphism (AFLP): no genome sequence required. Nat Educ 1:1Google Scholar
  35. Choudhary K, Choudhary OP, Shekhawat NS (2008) Marker assisted selection: a novel approach for crop improvement. Am Eurasian J Agron 1:26–30Google Scholar
  36. Chung S-M, Staub JE (2003) The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxan. Theor Appl Genet 107:757–776PubMedCrossRefGoogle Scholar
  37. Clark CM, Wentworth TM, Malley DMO (2000) Genetic discontinuity revealed by chloroplast microsatellites in eastern North American Abies (Pinaceae). Am J Bot 87:774–778PubMedCrossRefGoogle Scholar
  38. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572CrossRefGoogle Scholar
  39. Collard BCY, Jahufer MZZ, Brouwer JB et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping, and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  40. Crossa J, Perez P, Campos GD et al (2010) Genomic selection and prediction in plant breeding. J Crop Improv 25:1–23Google Scholar
  41. Das M, Bhattacharya S, Pal A (2005) Generation and characterization of SCARs by cloning and sequencing of RAPD products: a strategy for species-specific marker development in bamboo. Ann Bot 95:835–841PubMedPubMedCentralCrossRefGoogle Scholar
  42. Das M, Banerjee S, Dhariwal R et al (2012) Development of SSR markers and construction of a linkage map in jute. J Genet 91(1)Google Scholar
  43. Datta K, Baisakh N, Maung TK et al (2002) Pyramiding transgenes for multiple resistances in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106:1–8PubMedCrossRefGoogle Scholar
  44. Devran Z, Firat AF, Tor M et al (2011) AFLP and SRAP markers linked to the mj gene for root-knot nematode resistance in cucumber. Sci Agric 68(1):115–119Google Scholar
  45. Dnyaneshwar W, Preeti C, Kalpana J et al (2006) Development and application of RAPD-SCAR marker for identification of Phyllanthus emblica Linn. Biol Pharm Bull 29:2313–2316PubMedCrossRefGoogle Scholar
  46. Doveri S, Lee D, Maheswaran M et al (2008) Molecular markers: history, features and applications. In: Abbott AG, Kole C (eds) Principles and Practices of Plant Genomics, vol 1. Science Publishers, Enfield, pp 23–68Google Scholar
  47. Duran C, Appleby N, Edwards D et al (2009) Molecular genetic markers: discovery, applications, data storage and visualisation. Curr Bioinforma 4:16–27CrossRefGoogle Scholar
  48. Elazreg H, Chtourou-Ghorbel N, Ghariani S et al (2011) Studying genetic diversity of the Tunisian Lolium perenne and Festuca arundinacea with AFLP markers. J Food Agri Environ 9(1):409–415Google Scholar
  49. Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282PubMedCrossRefGoogle Scholar
  50. Fjellheim S, Rognli OA (2005) Genetic diversity within and among nordic meadow fescue (Festuca pratensis Huds.) cultivars determined on the basis of AFLP markers. Crop Sci 45:2081–2086CrossRefGoogle Scholar
  51. Flavell AJ, Knox MR, Pearce SR et al (1998) Retrotransposon-based insertion polymorphism (RBIP) for high throughput marker analysis. The Plant J 16:643–650PubMedCrossRefGoogle Scholar
  52. Frisch M, Melchinger AE (2005) Selection theory for marker assisted backcrossing. Gen Dent 170:909–917Google Scholar
  53. Fujita D, Yoshimura A, Yasui H (2010) Development of near-isogenic lines and pyramided lines carrying resistance genes to green rice leafhopper (Nephotettix cincticeps Uhler) with the Taichung 65 genetic background in rice (Oryza sativa L.). Breed Sci 60:18–27CrossRefGoogle Scholar
  54. Fukuoka S, Inoue T, Miyao A et al (1994) Mapping of sequence-tagged sites in rice by single conformation polymorphism. DNA Res 1:271–277PubMedCrossRefGoogle Scholar
  55. Gao AL, He HG, Chen QZ (2005) Pyramiding wheat powdery mildew resistance genes Pm2, Pm4a and Pm21 by molecular marker-assisted selection. Acta Agron Sin 31:1400–1405Google Scholar
  56. Gulsen O, Karagul S, Abak K (2006) Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biologia 62:41–45Google Scholar
  57. Gulsen O, Karagul S, Abak K (2007) Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biol Sect Cell Mol Biol 62(1):41–45Google Scholar
  58. Guo PG, Bai GH, Shaner GE (2003) AFLP and STS tagging of a major QTL for Fusarium head blight resistance in wheat. Theor Appl Genet 106:1011–1017PubMedCrossRefGoogle Scholar
  59. Guo WZ, Zhang TZ, Zhu XF (2005) Modified backcross pyramiding breeding with molecular assisted selection and its applications in cotton. Acta Agron Sin 31(8):963–970Google Scholar
  60. Haliassos A, Chomel JC, Tesson L et al (1989) Modification of enzymatically amplified DNA for the detection of point mutations. Nucleic Acids Res 17:3606PubMedPubMedCentralCrossRefGoogle Scholar
  61. Han F, Romagosa I, Ullrich SE et al (1997) Molecular marker-assisted selection for malting quality traits in barley. Mol Breed 3:427–437CrossRefGoogle Scholar
  62. Hash CT, Thakur RP, Rao VP et al (2006) Evidence for enhanced resistance to diverse isolates of pearl through gene pyramiding millet downy mildew. Internat Sorghum Millets Newslett 47:134–138Google Scholar
  63. Hayashi K (1992) PCR-SSCP- rapid and easy detection of DNA-sequence changes. Hum Cell 5:180–184PubMedGoogle Scholar
  64. Hayashi K (1994) How sensitive is PCR-SSCP? Hum Mutat 2:338–346CrossRefGoogle Scholar
  65. Hiremath PJ, Kumar A, Penmetsa RV et al (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716–732PubMedPubMedCentralCrossRefGoogle Scholar
  66. Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs – challenges and opportunities. In: Proceeding of the 4th International Crop Science Congress. Brisbane, AustraliaGoogle Scholar
  67. Hospital F, Charcosset A (1997) Marker assisted introgression of quantitative trait loci. Genet 147:1469–1485Google Scholar
  68. Hospital F, Goldringer I, Openshaw S (2000) Efficient within a scheme except for nodes with probability of marker-based recurrent selection for multiple quantitative trait loci. Genet Res 75:357–368PubMedCrossRefGoogle Scholar
  69. Howe GT, Aitken SN, DB N et al (2003) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can J Bot 81:1247–1266CrossRefGoogle Scholar
  70. Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Report 21:289–294CrossRefGoogle Scholar
  71. Hu J, Ochoa OE, Truco MJ et al (2005) Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica 144:225–235CrossRefGoogle Scholar
  72. Huang J, Sun M (1999) A modified AFLP with fluorescencelabelled primers and automated DNA sequencer detection for efficient fingerprinting analysis in plants. Bioresour Technol 14:277–278Google Scholar
  73. Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177PubMedCrossRefGoogle Scholar
  74. Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. http://creativecommons.org/licenses/by/3.0
  75. Jiang H, Feng Y, Bao L et al (2012) Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breed 30:1679–1688CrossRefGoogle Scholar
  76. Johnson RC, Kisha TJ, Evans MA (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47:1728–1736CrossRefGoogle Scholar
  77. Jones E, Sullivan H, Bhattramakki D et al (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize Zea mays L. Theor Appl Genet 115:361–371PubMedCrossRefGoogle Scholar
  78. Jones E, Chu WC, Ayele M et al (2009) Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mays L.) germplasm. Mol Breed 24:165–176CrossRefGoogle Scholar
  79. Jordan DR, Tao Y, Godwin ID et al (2003) Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106:559PubMedCrossRefGoogle Scholar
  80. Jordan DR, Tao Y, Godwin ID et al (2004) Comparision of identity by descent and identityby state for detecting genetic regions under selection in a sorghum pedigree breeding program. Mol Breed 14:441–454CrossRefGoogle Scholar
  81. Kalendar R, Grob T, Regina M et al (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711CrossRefGoogle Scholar
  82. Kalendar R, Flavell AJ, Ellis THN et al (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530PubMedCrossRefGoogle Scholar
  83. Karkkainen HP, Sillanpaa MJ (2012) Back to basics for Bayesian model building in genomic selection. Gen Dent 191:969–987Google Scholar
  84. Katiyar S, Verulkar S, Chandel G et al (2001) Genetic analysis and pyramiding of two gall midge resistance genes (Gm 2 and Gm 6 t) in rice (Oryzae sativa L.). Euphytica 122:327–334CrossRefGoogle Scholar
  85. Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167PubMedCrossRefGoogle Scholar
  86. Khan S, Qureshi MI, Kamaluddin et al (2007) Protocol for isolation of genomic DNA from dry and fresh roots of medicinal plants suitable for RAPD and restriction digestion. Afr J Biotechnol 6:175–178Google Scholar
  87. Khan S, Husaini AM, Kiran U et al (2008) SCAR markers for authentication of herbal drugs. Medicinal Aromatic Plant Science Biotechno 2(2):79–85Google Scholar
  88. Khan S, Khanda JM, Tayaab M et al (2009) RAPD profile for authentication of medicinal plant Glycyrrhiza glabra L. Internet J Food Safety 11:24–28Google Scholar
  89. Kiani G, Nematzadeh AG, Ghareyazie B et al (2012) Pyramiding of cry1Ab and fgr genes in two Iranian rice cultivars Neda and Nemat. J Agric Sci Technol 14:1087–1092Google Scholar
  90. Kim H, Yamamoto M, Hosaka F et al (2011) Molecular characterization of novel Ty1-copia-like retrotransposons in pear (Pyrus pyrifolia). Tree Genet Genomes 7:845–856CrossRefGoogle Scholar
  91. Kiran U, Khan S, Mirza KJ et al (2010) SCAR markers: a potential tool for authentication of herbal drugs. Fitoterapia 81(8):969–976PubMedCrossRefGoogle Scholar
  92. Komori T, Nitta N (2005) Utlization of CAPS/dCAPS method to convert rice SNPs into PCR-based markers. Breed Sci 55:93–98CrossRefGoogle Scholar
  93. Konieczny A, Ausubel FM (1993) Procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410PubMedCrossRefGoogle Scholar
  94. Korekar G, Sharma RK, Kumar R et al (2012) Identification and validation of sex-linked SCAR markers in dioecious Hippophae rhamnoides L. (Elaeagnaceae). Biotechnol Lett 34:973–978PubMedCrossRefGoogle Scholar
  95. Kottapalli KR, Narasu ML, Jena KK (2010) Effective strategy for pyramiding three bacterial blight resistance genes into fine grain rice cultivar, Samba Mahsuri, using sequence tagged site markers. Biol Lett 32:989–996Google Scholar
  96. Kuchel H, Fox R, Reinheimer J et al (2007) The successful application of a marker-assisted wheat breeding strategy. Mol Breed 20:295–308CrossRefGoogle Scholar
  97. Kumar PR, Biswal AK, Balachandran SM et al (2007) A mitochondrial repeat specific marker for distinguishing wild abortive type cytoplasmic male sterile rice lines from their cognate isogenic maintainer lines. Crop Sci 47:207–211CrossRefGoogle Scholar
  98. Kumar J, Mir RR, Kumar N et al (2010) Marker-assisted selection for pre-harvest sprouting tolerance and leaf rust resistance in bread wheat. Plant Breed 129:617–621CrossRefGoogle Scholar
  99. Kumaravadivel N, Uma MD, Saravanan PA et al (2006) Molecular marker-assisted selection and pyramiding genes for gall midge resistance in rice suitable for Tamil Nadu Region. In: ABSTRACTS-2nd International Rice Congress 2006, p 257Google Scholar
  100. Kwon SJ, Park KC, Kim JH et al (2005) Rim 2/Hipa CACTA transposon display: a new genetic marker technique in Oryza species. BMC Genet 6:15PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lan WU, Chao W (2011) Application of molecular marker assisted selection in gene pyramiding and selection of new cultivars. J Northeast Agric Univ 18(1):79–84Google Scholar
  102. Langridge P, Chalmers K (2005) The principle: identification and application of molecular markers. In: Lorz H, Wenzel G (eds) Biotechnology in agriculture and forestry. Molecular marker systems, vol 55. Springer, Heidelberg, pp 3–22Google Scholar
  103. Lee M, Godshalk EB, Lamkey KR et al (1989) Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Sci 29:1067–1071CrossRefGoogle Scholar
  104. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461Google Scholar
  105. Li L, Strahwald J, Hofferbert HR et al (2005) DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics 170:813–882PubMedPubMedCentralCrossRefGoogle Scholar
  106. Li P, Wang Y, Sun X et al (2009) Using microsatellite (SSR) and morphological markers to assess the genetic diversity of 12 falcata (Medicago sativa spp. falcata) populations from Eurasia. Afr J Biotechnol 8(10):2102–2108Google Scholar
  107. Li SJ, Xie HW, Qian MJ et al (2012) A set of SCAR markers efficiently differentiating hybrid rice. Rice Sci 19:14–20CrossRefGoogle Scholar
  108. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–997PubMedCrossRefGoogle Scholar
  109. Liu J, Liu D, Tao W et al (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24CrossRefGoogle Scholar
  110. Liu X, Wang L, Chen S et al (2005) Genetic and physical mapping of Pi 36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol Gen Genomics 274:394–401CrossRefGoogle Scholar
  111. Liu S, Sehgal SK, Li J et al (2013) Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics 195:263–273PubMedPubMedCentralCrossRefGoogle Scholar
  112. Lou Q, Chen J (2007) Ty1-copia retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome 50:802–810PubMedCrossRefGoogle Scholar
  113. Luo Y, Sangha J, Wang S et al (2012) Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhanced disease resistance to bacterial blight. Mol Breed 30:1601–1610CrossRefGoogle Scholar
  114. Makino R, Yazyu H, Kishimoto Y et al (1992) F-SSCP fluorescence-based polymerase chain reaction-singlestrand conformation polymorphism (PCR-SSCP) analysis. PCR Methods Appl 2:10–13PubMedCrossRefGoogle Scholar
  115. Mao C, Yi K, Yang L et al (2004) Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. J Exp Bot 55:137–143PubMedCrossRefGoogle Scholar
  116. Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci U S A 88:2336–2340PubMedPubMedCentralCrossRefGoogle Scholar
  117. Mastan SG, Sudheer PDVN, Rahman H et al (2012) Development of SCAR marker specific to non-toxic Jatropha curcas L. and designing a novel multiplexing PCR along with nrDNA ITS primers to circumvent the false negative detection. Mol Biotechnol 50:57–61PubMedCrossRefGoogle Scholar
  118. McDermott JM, Brandle U, Dutly F et al (1994) Genetic variation in powdery mildew of barley: development of RAPD, SCAR and VNTR markers. Phytopathology 84:1316–1321CrossRefGoogle Scholar
  119. Mehrotra M, Singh AK, Sanyal I et al (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182:87–102CrossRefGoogle Scholar
  120. Mian MAR, Hopkins AA, Zwonitzer JC (2002) Determination of genetic diversity in tall fescue with AFLP markers. Crop Sci 42:944–950CrossRefGoogle Scholar
  121. Michaels SD, Amasino RMA (1998) A robust method for detecting single nucleotide changes as polymorphic markers by PCR. Plant J 14:381–385PubMedCrossRefGoogle Scholar
  122. Miedaner T, Wilde F, Steiner B et al (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562–569PubMedCrossRefGoogle Scholar
  123. Mir RR, Banerjee S, Das M et al (2009) Development and characterization of large scale simple sequence repeats in jute. Crop Sci 49:1687–1694CrossRefGoogle Scholar
  124. Mishra MK, Narayana S, Bhat AM et al (2011) Genetic molecular analysis of Coffea Arabica (Rubiaceae) hybrids using SRAP markers. Rev Biol Trop 59(2):607–617PubMedGoogle Scholar
  125. Moreau L, Charcosset A, Hospital F et al (1998) Markerassisted selection efficiency in populations of finite size. Gen Dent 148(3):1353–1365Google Scholar
  126. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14(10):389–394PubMedCrossRefGoogle Scholar
  127. Mukhtar S, Khan MA, Paddar BA et al (2015) Molecular characterization of wheat germplasm for stripe rust resistance genes (Yr 5, Yr 10, Yr 15 & Yr 18) and identification of candidate lines for stripe rust breeding in Kashmir. Indian J Biotechnol 14:241–248Google Scholar
  128. Nair AS, Teo CH, Schwarzacher T et al (2005) Genome classification of banana cultivars from South India using IRAP markers. Euphytica 144:285–290CrossRefGoogle Scholar
  129. Nayak SN, Zhu H, Varghese N et al (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441PubMedPubMedCentralCrossRefGoogle Scholar
  130. Neff MM, Neff JD, Chory J et al (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392PubMedCrossRefGoogle Scholar
  131. Nocente F, Gazza L, Pasquini M (2007) Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica 155:329–336CrossRefGoogle Scholar
  132. Okada Y, Kanatani R, Arai S (2004) Interaction between barley yellowmosaic disease-resistance genes rym1 and rym5 in the response to BaYMV strains. Breed Sci 54:319–325CrossRefGoogle Scholar
  133. Orita M, Iwahana H, Kanazawa H et al (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphism. Proc Natl Acad Sci U S A 86:2766–2770PubMedPubMedCentralCrossRefGoogle Scholar
  134. Panihrahi J, Mishra RR, Sahu AR et al (2013) Marker- assisted breeding for simple inherited traits conferring stress resistance in crop plants. The Eco Scan 3:217–213Google Scholar
  135. Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993PubMedCrossRefGoogle Scholar
  136. Paterson AH, Lander ES, Hewitt JD et al (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726PubMedCrossRefGoogle Scholar
  137. Pearce SR, Knox M, Ellis TH et al (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genomics 263:898–907CrossRefGoogle Scholar
  138. Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334PubMedCrossRefGoogle Scholar
  139. Pérez-de-Castro AM, Vilanova S, Cañizares J et al (2012) Application of genomic tools in plant breeding. Curr Genom 13(3):179–195CrossRefGoogle Scholar
  140. Piepho HP (2009) Ridge regression and extensions for genomewide selection in maize. Crop Sci 49:1165–1175CrossRefGoogle Scholar
  141. Polashock JJ, Vorsa N (2002) Development of SCAR markers for DNA fingerprinting and germplasm analysis of American Cranberry. J Amer Soc Hort Sci 127(4):677–684Google Scholar
  142. Porceddu A, Albertini E, Baracaccia G et al (2002) Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L. Mol Gen Genomics 267:107–114CrossRefGoogle Scholar
  143. Powell W, Orozco-castillo C, Chalmers K et al (1995) Polymerase chain reaction-based assays for the characterization of plant genetic resources. Electrophoresis 16:1726–1730PubMedCrossRefGoogle Scholar
  144. Provan J, Biss PM, McMeel D et al (2004) Universal primers for the amplification of chloroplast microsatellites in grasses (Poaceae). Mol Ecol Notes 4:262–264CrossRefGoogle Scholar
  145. Provan J, Russell JR, Booth A et al (1999a) Polymorphic chloroplast simple-sequence repeat primers for systematic and population studies in the genus Hordeum. Mol Ecol 8:505–511PubMedCrossRefGoogle Scholar
  146. Provan J, Soranzo N, Wilson NJ et al (1999b) Low mutation rate for chloroplast microsatellites. Genetics 153:943–947PubMedPubMedCentralGoogle Scholar
  147. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and systematics. Trends Ecol Evol 16:142–147PubMedCrossRefGoogle Scholar
  148. Queen RA, Gribbon BM, James C et al (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Gen Genomics 271:91–97CrossRefGoogle Scholar
  149. Ray T, Roy SC (2009) Genetic diversity of amaranthus species from the indo-gangetic plains revealed by RAPD analysis leading to the development of ecotype-specific SCAR marker. J Herpetol 100:338–347Google Scholar
  150. Reif JC, Melchinger AE, Xia XC et al (2003) Use of SSRs for establishing heterotic groups in subtropical maize. TheoIr Appl Genet 107:947–957CrossRefGoogle Scholar
  151. Ribaut JM, Betran J (1999) Single large-scale markerassisted selection (SLS–MAS). Mol Breed 5:531–541CrossRefGoogle Scholar
  152. Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58(2):351–360Google Scholar
  153. Ribaut JM, Jiang C, Hoisington D (2002) Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci 42:557–565CrossRefGoogle Scholar
  154. Richero M, Vega MB, Cerdeiras MP et al (2013) Development of SCAR molecular markers for early and late differentiation of Eucalyptus globulus ssp globulus from E. globulus ssp maidenii. Trees 27:249–257CrossRefGoogle Scholar
  155. Saghai Maroof MA, Biyashev RM, Yang GP et al (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci U S A 91:5466–5470PubMedPubMedCentralCrossRefGoogle Scholar
  156. Saghai Maroof MA, Jeong SC, Gunduz I et al (2008) Pyramiding of soybean mosaic virus resistance genes by marker-assisted selection. Crop Sci 48:517–526CrossRefGoogle Scholar
  157. Salem KFM, El-Zanaty AM, Esmail RM (2008) Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatallite markers. World J Agri Sci 4(5):538–544Google Scholar
  158. Salgotra RK, Gupta BB, RJ M et al (2012) Introgression of bacterial leaf blight resistance and aroma genes using functional marker-assisted selection in rice (Oryza sativa L.). Euphytica 187:313–323CrossRefGoogle Scholar
  159. Sanchez de la Hoz MP, Davila JP, Loarce Y et al (1996) Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley. Genome 39:112–117PubMedCrossRefGoogle Scholar
  160. Santra D, DeMacon VK, Garland-Campbell K, Kidwell K (2006) Marker assisted backcross breeding for simultaneous introgression of stripe rust resistance genes yr5 and yr15 into spring wheat (Triticum aestivum L.). In: 2006 international meeting of ASA-CSSA-SSSA, pp 74–75Google Scholar
  161. Schlotterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:2211–2215CrossRefGoogle Scholar
  162. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234PubMedCrossRefGoogle Scholar
  163. Sederoff RR, Levings CS, Timothy DH et al (1981) Evolution of DNA sequence organization in mitochondrial genomes of Zea. Proc Natl Acad Sci U S A 78:5953–5957PubMedPubMedCentralCrossRefGoogle Scholar
  164. Sen A, Balyan HS, Sharma PC et al (1997) DNA amplification fingerprinting (DAF) as a new source of molecular markers in bread wheat. Wheat Information Service 85:35–42Google Scholar
  165. Shahid M, Srivastav M, Sobia A et al (2012) An overview of molecular marker techniques. Advan Life Sci 1:13–19Google Scholar
  166. Shanti ML, Shenoy VV, Devi GL et al (2010) Marker-assisted breeding for resistance to bacterial leaf blight in popular cultivar and parental lines of hybrid rice. J Plant Pathol 92(2):495–501Google Scholar
  167. Sharma PN, Torii A, Takumi S et al (2004) Marker-assisted pyramiding ofbrownplanthopper (Nilaparvata lugens Stal) resistance genes Bph1 and bph2 on rice chromosome 12. Hereditas 140:61–69PubMedCrossRefGoogle Scholar
  168. Shaw J, Lickey EB, Beck JT et al (2005) The tortoise and Hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166PubMedCrossRefGoogle Scholar
  169. Shcherban AB, Vaughan DA, Tomooka N (2000) Isolation of a new retrotransposon-like DNA sequence and its use in analysis of diversity within the Oryza officinalis complex. Genetica 108:145–154PubMedCrossRefGoogle Scholar
  170. Shi A, Chen P, Li DX et al (2009) Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers. Mol Breed 23:113–124CrossRefGoogle Scholar
  171. Siangliw JL, Jongdeeb B, Pantuwanc G et al (2007) Developing KDML105 backcross introgression lines using marker-assisted selection for QTLs associated with drought tolerance in rice. Sci Asia 33:207–214CrossRefGoogle Scholar
  172. Singh R, Datta D, Priyamvada et al (2004) Marker-assisted selection for leaf rust resistance genes Lr19 and Lr24 in wheat (Triticum aestivum L.). J Appl Genet 45:399–403PubMedGoogle Scholar
  173. Somers DJ, Thomas J, DePauw R et al (2005) Assembling complex genotypes to resist Fusarium in wheat (Triticum aestivum L.). Theor Appl Genet 111:1623–1631PubMedCrossRefGoogle Scholar
  174. Soranzo N, Provan J, Powell W (1999) An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 42:158–161PubMedCrossRefGoogle Scholar
  175. Spaniolas S, May ST, Bennett MJ, Tuker GA (2006) Authentication of coffee by means of PCR-RFLP analysis and lab-on-a chip capillary electrophoresis. J Agric Food Chem 54:7466–7470PubMedCrossRefGoogle Scholar
  176. Sperisen C, Büchler U, Gugerli F et al (2001) Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol Ecol 10:257–263PubMedCrossRefGoogle Scholar
  177. Suh JP, Yang SJ, Jeung JU et al (2011) Development of elite breeding lines conferring Bph18 gene-derived resistance to brown planthopper (BPH) by marker-assisted selection and genome-wide background analysis in japonica rice (Oryza sativa L.). Field Crop Res 120:215–222CrossRefGoogle Scholar
  178. Sultan P, Shawl AS, Rehman S et al (2010) Molecular characterization and marker based chemotaxonomic studies of Podophyllum hexandrum Royle. Fitoterapia 81:243–247PubMedCrossRefGoogle Scholar
  179. Sundaram RM, Vishnupriya MR, Biradar SK et al (2010) Marker-assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 80:411–422Google Scholar
  180. Syed NH, Sorensen AP, Antonise R et al (2006) A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor Appl Genet 112:517–527PubMedCrossRefGoogle Scholar
  181. Syvanen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942PubMedCrossRefGoogle Scholar
  182. Takeshi H, Hiroyoshi I (2010) EM algorithm for Bayesian estimation of genomic breeding values. BMC Genet 11:3Google Scholar
  183. Tanksley SD, Young ND, Paterson AH et al (1989) RFLP mapping in plant breeding: new tools for an old science biotechnology. Nat Biotechnol 7:257–264CrossRefGoogle Scholar
  184. Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12(10):4127–4138PubMedPubMedCentralCrossRefGoogle Scholar
  185. Torress AM, Weeden NF, Martin A (1993) Linkage among isozyme, RFLP, and RAPD markers. Plant Physiol 101:394–452Google Scholar
  186. Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981PubMedPubMedCentralCrossRefGoogle Scholar
  187. Tripathi N, Chouhan DS, Saini N et al (2012) Assessment of genetic variations among highly endangered medicinal plant Bacopa monnieri (L.) from Central India using RAPD and ISSR analysis. Biotech 2:327–336Google Scholar
  188. van de Wiel C, Arens P, Vosman B (1999) Microsatellite retrieval in lettuce (Lactuca sativa L.). Genome 42:139–149PubMedCrossRefGoogle Scholar
  189. van den Broeck D, Maes T, Sauer M et al (1998) Plant J 13:121–129PubMedGoogle Scholar
  190. Varshney RK (2010) Gene-based marker systems in plants: high throughput approaches for discovery and genotyping. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, Dordrecht, pp 119–142CrossRefGoogle Scholar
  191. Varshney RK, Mahendar T, Aggarwal RK et al (2007) Genic molecular markers in plants: development and applications. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement: Vol. 1: genomics approaches and platforms, pp 13–29CrossRefGoogle Scholar
  192. Varshney RK, Bansal KC, Aggarwal PK et al (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 7:363–371CrossRefGoogle Scholar
  193. Varshney RK, Mohan SM, Pooran MG et al (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv http://dx.doi.org/10.1016/j.biotechadv.2013.01.001
  194. Vaseeharan B, Rajakamaran P, Jayaseelan D, Vincent AY (2013) Molecular markers and their application in genetic diversity of penaeid shrimp. Aquac Int 21:219–241CrossRefGoogle Scholar
  195. Vignal A, Milan D, Sancristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305PubMedPubMedCentralCrossRefGoogle Scholar
  196. Vos P, Hogers R, Bleeker M, Reijans M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414PubMedPubMedCentralCrossRefGoogle Scholar
  197. Waugh R, McLean K, Flavell AJ et al (1997) Genetic distribution of BARE-1- like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genomics 253:687–694CrossRefGoogle Scholar
  198. Wei Y, Yao F, Zhu C et al (2008) Breeding of transgenic rice restorer line for multiple resistance against bacterial blight, striped stem borer and herbicide. Euphytica 163:177–184CrossRefGoogle Scholar
  199. Weiland JJ, Yu MH (2003) A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugarbeet. Crop Sci 43:814–881CrossRefGoogle Scholar
  200. Weising K, Gardner RC (1999) A set of conserved PCR primers for analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19PubMedCrossRefGoogle Scholar
  201. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218PubMedPubMedCentralCrossRefGoogle Scholar
  202. Welsh J, Chada K, Dalal SS et al (1992) Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res 20:4965–4970PubMedPubMedCentralCrossRefGoogle Scholar
  203. Wenz HM, Robertson JM, Menchen S et al (1998) High-precision genotyping by denaturing capillary electrophoresis. Genome Res 3:69–80Google Scholar
  204. Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55CrossRefGoogle Scholar
  205. Wilde F, Korzun V, Ebmeyer E et al (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol Breed 19:357–370CrossRefGoogle Scholar
  206. Williams JGK, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedPubMedCentralCrossRefGoogle Scholar
  207. Witsenboer H, Vogel J, Michelmore RW (1997) Identification, genetic localisation, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome 40:923–936PubMedCrossRefGoogle Scholar
  208. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNA. Proc Natl Acad Sci U S A 84:9054–9058PubMedPubMedCentralCrossRefGoogle Scholar
  209. Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genomics 241:225–235CrossRefGoogle Scholar
  210. Wu KS, Jones R, Danneberger L et al (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res 22:3257–3258PubMedPubMedCentralCrossRefGoogle Scholar
  211. Xie W, Zhang X, Huang L et al (2011) Genetic maps of SSR and SRAP markers in diploid orchardgrass (Dactylis glomerata L.) using the pseudo-test cross strategy. Genome 54:212–221PubMedCrossRefGoogle Scholar
  212. Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publication to practice. Crop Sci 48:391–407CrossRefGoogle Scholar
  213. Yaa YX, Li M, Liu Z et al (2007) A novel gene, screened by cDNA-AFLP approach, contributes to lowering the acidity of fruit in apple. Plant Physiol Biochem 45:139–145CrossRefGoogle Scholar
  214. Yamanaka N, Lemos NG, Uno M et al (2013) Resistance to Asian soybean rust in soybean lines with the pyramided three Rpp genes. Crop Breed Appl Biotech 13:75–82CrossRefGoogle Scholar
  215. Yan J, Yang X, Shah T et al (2009) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 15:441–451Google Scholar
  216. Yang AH, Zhang JJ, Yao XH et al (2011) Chloroplast microsatellite markers in Liriodendron tulipifera (Magnoliaceae) and cross-species amplification in L. chinense. Am J Bot 98(5):123–126CrossRefGoogle Scholar
  217. Ye Q, Qiu YX, Quo YQ et al (2006) Species-specific SCAR markers for authentication of Sinocalycanthus chinensis. J Zhejiang Univ (Sci) 7(11):868–872CrossRefGoogle Scholar
  218. Yin X, Stam P, Dourleijn CJ et al (1999) AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theor Appl Genet 99:244–253CrossRefGoogle Scholar
  219. Zhang J, Li X, Jiang G et al (2006) Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breed 125:600–605CrossRefGoogle Scholar
  220. Zhang F, Chen S, Chen F et al (2011) Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium). Euphytica 177:15–24CrossRefGoogle Scholar
  221. Zhao G, Dai H, Chang L et al (2010) Isolation of two novel complete Ty1-copia retrotransposons from apple and demonstration of use of derived S-SAP markers for distinguishing bud sports of Malus domestica cv. Fuji. Tree Genet Genomes 6:149–159CrossRefGoogle Scholar
  222. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeats (SSR)-anchored PCR amplification. Genomics 20:176–183PubMedCrossRefGoogle Scholar
  223. Zong G, Wang A, Wang L et al (2012) A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.). J Genet Genomics 39:335–350PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Kamaluddin
    • 1
  • M. A. Khan
    • 1
  • Usha Kiran
    • 2
  • Athar Ali
    • 2
  • Malik Zainul Abdin
    • 3
  • M. Y. Zargar
    • 1
  • Shahid Ahmad
    • 1
  • Parvej A. Sofi
    • 1
  • Shazia Gulzar
    • 1
  1. 1.Division of Genetics & Plant Breeding, Faculty of AgricultureSKUAST of KashmirNew DelhiIndia
  2. 2.CTPD, Department of BiotechnologyJamia HamdardNew DelhiIndia
  3. 3.Department of BiotechnologyJamia HamdardNew DelhiIndia

Personalised recommendations