Interaction of Bone Marrow Stem Cells with Other Cells

  • Hongxia Zhang
  • Shengwei Huang
  • Jiangnan Hu
  • Brian Wang
  • Kunlin JinEmail author


Transplantation of bone marrow stem cells (BMSCs) as a regenerative cell replacement therapy for stroke holds great promise. However, the mechanisms underlying functional recovery after stroke remain unclear. Clearly, BMSCs benefit the neurological dysfunction in either direct or indirect methods through the interaction with other cells. In this chapter, we review the direct and indirect interactions of transplanted BMSCs with HSCs, immune cells, neural stem cells (NSCs), neurons, astrocytes, and endothelial cells for better understanding of the mechanisms underlying BMSC-mediated neurological function improvement after stroke.


Transplantation Bone marrow stem cells Immune cells Interaction 


  1. 1.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.PubMedGoogle Scholar
  2. 2.
    Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4(5):267–74.PubMedGoogle Scholar
  3. 3.
    Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, Ruadkow IA. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2(2):83–92.PubMedGoogle Scholar
  4. 4.
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A, International Society for Cellular T. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–5. doi: 10.1080/14653240500319234.PubMedCrossRefGoogle Scholar
  6. 6.
    Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998;279(5356):1528–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999;96(19):10711–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247–56. doi: 10.1006/exnr.2000.7389.PubMedCrossRefGoogle Scholar
  10. 10.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, Taga T, Okano H, Hata J, Umezawa A. Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation. 2001;68(4–5):235–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Kwak DH, Yu K, Kim SM, Lee DH, Kim SM, Jung JU, Seo JW, Kim N, Lee S, Jung KY, You HK, Kim HA, Choo YK. Dynamic changes of gangliosides expression during the differentiation of embryonic and mesenchymal stem cells into neural cells. Exp Mol Med. 2006;38(6):668–76. doi: 10.1038/emm.2006.79.PubMedCrossRefGoogle Scholar
  13. 13.
    Malgieri A, Kantzari E, Patrizi MP, Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med. 2010;3(4):248–69.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75(3):389–97. doi: 10.1097/01.TP.0000045055.63901.A9.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, Xu Y, Gautam SC, Chopp M. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology. 2002;22(4):275–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Dormady SP, Bashayan O, Dougherty R, Zhang XM, Basch RS. Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment. J Hematother Stem Cell Res. 2001;10(1):125–40. doi: 10.1089/152581601750098372.PubMedCrossRefGoogle Scholar
  17. 17.
    Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11(1):96–104. doi: 10.1016/j.ymthe.2004.09.020.PubMedCrossRefGoogle Scholar
  18. 18.
    Ito M, Kuroda S, Sugiyama T, Maruichi K, Kawabori M, Nakayama N, Houkin K, Iwasaki Y. Transplanted bone marrow stromal cells protect neurovascular units and ameliorate brain damage in stroke-prone spontaneously hypertensive rats. Neuropathology. 2012;32(5):522–33. doi: 10.1111/j.1440-1789.2011.01291.x.PubMedCrossRefGoogle Scholar
  19. 19.
    Le Blanc K, Rasmusson I, Gotherstrom C, Seidel C, Sundberg B, Sundin M, Rosendahl K, Tammik C, Ringden O. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol. 2004;60(3):307–15. doi: 10.1111/j.0300-9475.2004.01483.x.PubMedCrossRefGoogle Scholar
  20. 20.
    Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K. Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant. 2003;32(3):265–72. doi: 10.1038/sj.bmt.1704111.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 2004;13(3):263–71. doi: 10.1089/154732804323099190.PubMedCrossRefGoogle Scholar
  22. 22.
    Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70. doi: 10.1038/nm747.PubMedCrossRefGoogle Scholar
  23. 23.
    Einstein O, Ben-Hur T. The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol. 2008;65(4):452–6. doi: 10.1001/archneur.65.4.452.PubMedCrossRefGoogle Scholar
  24. 24.
    Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–9. doi: 10.1038/nature04957.PubMedCrossRefGoogle Scholar
  25. 25.
    Lo Celso C, Scadden DT. The haematopoietic stem cell niche at a glance. J Cell Sci. 2011;124(Pt 21):3529–35. doi: 10.1242/jcs.074112.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34. doi: 10.1038/nature12984.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611. doi: 10.1016/j.cell.2008.01.038.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.PubMedGoogle Scholar
  29. 29.
    Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 2015;125(17):2621–9. doi: 10.1182/blood-2014-09-570192.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–21. doi: 10.1016/j.cell.2005.05.026.PubMedCrossRefGoogle Scholar
  31. 31.
    Kiel MJ, Radice GL, Morrison SJ. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell. 2007;1(2):204–17. doi: 10.1016/j.stem.2007.06.001.PubMedCrossRefGoogle Scholar
  32. 32.
    Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62. doi: 10.1038/nature10783.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88. doi: 10.1016/j.immuni.2006.10.016.PubMedCrossRefGoogle Scholar
  34. 34.
    Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33(3):387–99. doi: 10.1016/j.immuni.2010.08.017.PubMedCrossRefGoogle Scholar
  35. 35.
    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34. doi: 10.1038/nature09262.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495(7440):227–30. doi: 10.1038/nature11926.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62.PubMedCrossRefGoogle Scholar
  38. 38.
    Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994;1(8):661–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273(5272):242–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A. 1994;91(6):2305–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity. 2004;20(6):707–18. doi: 10.1016/j.immuni.2004.05.001.PubMedCrossRefGoogle Scholar
  42. 42.
    Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;208(3):421–8. doi: 10.1084/jem.20110132.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mendez-Ferrer S, Frenette PS. Hematopoietic stem cell trafficking: regulated adhesion and attraction to bone marrow microenvironment. Ann N Y Acad Sci. 2007;1116:392–413. doi: 10.1196/annals.1402.086.PubMedCrossRefGoogle Scholar
  44. 44.
    Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43. doi: 10.1038/nature12612.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, Lee JE, Kim YJ, Yang SK, Jung HL, Sung KW, Kim CW, Koo HH. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol. 2009;259(2):150–6. doi: 10.1016/j.cellimm.2009.06.010.PubMedCrossRefGoogle Scholar
  46. 46.
    Sun Z, Satomoto M, Makita K. Therapeutic effects of intravenous administration of bone marrow stromal cells on sevoflurane-induced neuronal apoptosis and neuroinflammation in neonatal rats. Kor J Anesthesiol. 2015;68(4):397–401. doi: 10.4097/kjae.2015.68.4.397.CrossRefGoogle Scholar
  47. 47.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43.PubMedCrossRefGoogle Scholar
  48. 48.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57(1):11–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22. doi: 10.1182/blood-2004-04-1559.PubMedCrossRefGoogle Scholar
  50. 50.
    Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30(1):42–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24(1):74–85. doi: 10.1634/stemcells.2004-0359.PubMedCrossRefGoogle Scholar
  52. 52.
    Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105(10):4120–6. doi: 10.1182/blood-2004-02-0586.PubMedCrossRefGoogle Scholar
  53. 53.
    Ye Z, Wang Y, Xie HY, Zheng SS. Immunosuppressive effects of rat mesenchymal stem cells: involvement of CD4+CD25+ regulatory T cells. Hepatobiliary Pancreat Dis Int. 2008;7(6):608–14.PubMedGoogle Scholar
  54. 54.
    Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103(12):4619–21. doi: 10.1182/blood-2003-11-3909.PubMedCrossRefGoogle Scholar
  55. 55.
    Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109(1):228–34. doi: 10.1182/blood-2006-02-002246.PubMedCrossRefGoogle Scholar
  56. 56.
    Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes. 2009;58(8):1797–806. doi: 10.2337/db09-0317.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26(1):212–22. doi: 10.1634/stemcells.2007-0554.PubMedCrossRefGoogle Scholar
  58. 58.
    Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105(7):2821–7. doi: 10.1182/blood-2004-09-3696.PubMedCrossRefGoogle Scholar
  59. 59.
    Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 2010;185(1):302–12. doi: 10.4049/jimmunol.0902007.PubMedCrossRefGoogle Scholar
  60. 60.
    Jung KH, Song SU, Yi T, Jeon MS, Hong SW, Zheng HM, Lee HS, Choi MJ, Lee DH, Hong SS. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology. 2011;140(3):998–1008. doi: 10.1053/j.gastro.2010.11.047.PubMedCrossRefGoogle Scholar
  61. 61.
    Lim JH, Kim JS, Yoon IH, Shin JS, Nam HY, Yang SH, Kim SJ, Park CG. Immunomodulation of delayed-type hypersensitivity responses by mesenchymal stem cells is associated with bystander T cell apoptosis in the draining lymph node. J Immunol. 2010;185(7):4022–9. doi: 10.4049/jimmunol.0902723.PubMedCrossRefGoogle Scholar
  62. 62.
    Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res. 2012;35(2):213–21. doi: 10.1007/s12272-012-0202-z.PubMedCrossRefGoogle Scholar
  63. 63.
    Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28(8):875–84.PubMedCrossRefGoogle Scholar
  64. 64.
    Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Gu L, Xiong X, Zhang H, Xu B, Steinberg GK, Zhao H. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke. 2012;43(7):1941–6. doi: 10.1161/STROKEAHA.112.656611.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Baruch K, Ron-Harel N, Gal H, Deczkowska A, Shifrut E, Ndifon W, Mirlas-Neisberg N, Cardon M, Vaknin I, Cahalon L, Berkutzki T, Mattson MP, Gomez-Pinilla F, Friedman N, Schwartz M. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A. 2013;110(6):2264–9. doi: 10.1073/pnas.1211270110.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wan YY, Flavell RA. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci U S A. 2005;102(14):5126–31. doi: 10.1073/pnas.0501701102.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zhao E, Wang L, Dai J, Kryczek I, Wei S, Vatan L, Altuwaijri S, Sparwasser T, Wang G, Keller ET, Zou W. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. Oncoimmunology. 2012;1(2):152–61. doi: 10.4161/onci.1.2.18480.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, Wei S, David O, Curiel TJ, Zou W. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 2004;64(22):8451–5. doi: 10.1158/0008-5472.CAN-04-1987.PubMedCrossRefGoogle Scholar
  70. 70.
    Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722–9. doi: 10.1182/blood-2002-07-2104.PubMedCrossRefGoogle Scholar
  71. 71.
    Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation. 2010;90(12):1312–20. doi: 10.1097/TP.0b013e3181fed001.PubMedCrossRefGoogle Scholar
  72. 72.
    Tipnis S, Viswanathan C, Majumdar AS. Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunol Cell Biol. 2010;88(8):795–806. doi: 10.1038/icb.2010.47.PubMedCrossRefGoogle Scholar
  73. 73.
    Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102(10):3837–44. doi: 10.1182/blood-2003-04-1193.PubMedCrossRefGoogle Scholar
  74. 74.
    Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–9. doi: 10.1038/nm.1927.PubMedCrossRefGoogle Scholar
  75. 75.
    English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol. 2009;156(1):149–60. doi: 10.1111/j.1365-2249.2009.03874.x.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le AD. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183(12):7787–98. doi: 10.4049/jimmunol.0902318.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Yang N, Baban B, Isales CM, Shi XM. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism. FASEB J. 2015;29(9):3954–63. doi: 10.1096/fj.15-273664.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012;12(5):383–96. doi: 10.1038/nri3209.PubMedCrossRefGoogle Scholar
  79. 79.
    Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A. Pivotal role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15(8):946–50. doi: 10.1038/nm.1999.PubMedCrossRefGoogle Scholar
  80. 80.
    Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A, Pistoia V. Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells. 2009;27(3):693–702. doi: 10.1634/stemcells.2008-0687.PubMedCrossRefGoogle Scholar
  81. 81.
    Wu J, Wang Q, Fu X, Wu X, Gu C, Bi J, Xie F, Kang N, Liu X, Yan L, Cao Y, Xiao R. Influence of immunogenicity of allogeneic bone marrow mesenchymal stem cells on bone tissue engineering. Cell Transplant. 2016;25(2):229–42. doi: 10.3727/096368915X687967.PubMedGoogle Scholar
  82. 82.
    Wang LQ, Lin ZZ, Zhang HX, Shao B, Xiao L, Jiang HG, Zhuge QC, Xie LK, Wang B, Su DM, Jin KL. Timing and dose regimens of marrow mesenchymal stem cell transplantation affect the outcomes and neuroinflammatory response after ischemic stroke. CNS Neurosci Ther. 2014;20(4):317–26. doi: 10.1111/cns.12216.PubMedCrossRefGoogle Scholar
  83. 83.
    Shi M, Liu ZW, Wang FS. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol. 2011;164(1):1–8. doi: 10.1111/j.1365-2249.2011.04327.x.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med. 2007;262(5):509–25. doi: 10.1111/j.1365-2796.2007.01844.x.PubMedCrossRefGoogle Scholar
  85. 85.
    Deng W, Han Q, Liao L, You S, Deng H, Zhao RC. Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol. 2005;24(7):458–63. doi: 10.1089/dna.2005.24.458.PubMedCrossRefGoogle Scholar
  86. 86.
    Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 2005;35(5):1482–90. doi: 10.1002/eji.200425405.PubMedCrossRefGoogle Scholar
  87. 87.
    Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–72. doi: 10.1182/blood-2005-07-2657.PubMedCrossRefGoogle Scholar
  88. 88.
    Clutter SD, Fortney J, Gibson LF. MMP-2 is required for bone marrow stromal cell support of pro-B-cell chemotaxis. Exp Hematol. 2005;33(10):1192–200. doi: 10.1016/j.exphem.2005.06.022.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Powell RJ, Jenkins JS. Lymphocyte subpopulations. Postgrad Med J. 1987;63(745):931–5.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006;107(4):1484–90. doi: 10.1182/blood-2005-07-2775.PubMedCrossRefGoogle Scholar
  91. 91.
    Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003;76(8):1208–13. doi: 10.1097/01.TP.0000082540.43730.80.PubMedCrossRefGoogle Scholar
  92. 92.
    Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol. 2007;149(2):353–63. doi: 10.1111/j.1365-2249.2007.03422.x.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, Daudt L, Ibatici A, Piaggio G, Pozzi S, Frassoni F, Locatelli F. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005;90(4):516–25.PubMedGoogle Scholar
  94. 94.
    Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol. 2006;177(4):2080–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood. 2009;113(26):6576–83. doi: 10.1182/blood-2009-02-203943.PubMedCrossRefGoogle Scholar
  96. 96.
    Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007;83(1):71–6. doi: 10.1097/ Scholar
  97. 97.
    Wang Y, Tu W, Lou Y, Xie A, Lai X, Guo F, Deng Z. Mesenchymal stem cells regulate the proliferation and differentiation of neural stem cells through Notch signaling. Cell Biol Int. 2009;33(11):1173–9. doi: 10.1016/j.cellbi.2009.08.004.PubMedCrossRefGoogle Scholar
  98. 98.
    Lou S, Gu P, Chen F, He C, Wang M, Lu C. The effect of bone marrow stromal cells on neuronal differentiation of mesencephalic neural stem cells in Sprague-Dawley rats. Brain Res. 2003;968(1):114–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Bai L, Caplan A, Lennon D, Miller RH. Human mesenchymal stem cells signals regulate neural stem cell fate. Neurochem Res. 2007;32(2):353–62. doi: 10.1007/s11064-006-9212-x.PubMedCrossRefGoogle Scholar
  100. 100.
    Rivera FJ, Kandasamy M, Couillard-Despres S, Caioni M, Sanchez R, Huber C, Weidner N, Bogdahn U, Aigner L. Oligodendrogenesis of adult neural progenitors: differential effects of ciliary neurotrophic factor and mesenchymal stem cell derived factors. J Neurochem. 2008;107(3):832–43. doi: 10.1111/j.1471-4159.2008.05674.x.PubMedCrossRefGoogle Scholar
  101. 101.
    Rivera FJ, Couillard-Despres S, Pedre X, Ploetz S, Caioni M, Lois C, Bogdahn U, Aigner L. Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells. 2006;24(10):2209–19. doi: 10.1634/stemcells.2005-0614.PubMedCrossRefGoogle Scholar
  102. 102.
    Li X, Liu T, Song K, Yao L, Ge D, Bao C, Ma X, Cui Z. Culture of neural stem cells in calcium alginate beads. Biotechnol Prog. 2006;22(6):1683–9. doi: 10.1021/bp060185z.PubMedCrossRefGoogle Scholar
  103. 103.
    Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442(7104):823–6. doi: 10.1038/nature04940.PubMedCrossRefGoogle Scholar
  104. 104.
    Grandbarbe L, Bouissac J, Rand M, Hrabe de Angelis M, Artavanis-Tsakonas S, Mohier E. Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development. 2003;130(7):1391–402.PubMedCrossRefGoogle Scholar
  105. 105.
    Chojnacki A, Shimazaki T, Gregg C, Weinmaster G, Weiss S. Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J Neurosci. 2003;23(5):1730–41.PubMedGoogle Scholar
  106. 106.
    Robinson AP, Foraker JE, Ylostalo J, Prockop DJ. Human stem/progenitor cells from bone marrow enhance glial differentiation of rat neural stem cells: a role for transforming growth factor beta and Notch signaling. Stem Cells Dev. 2011;20(2):289–300. doi: 10.1089/scd.2009.0444.PubMedCrossRefGoogle Scholar
  107. 107.
    Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109(12):1543–9. doi: 10.1161/01.CIR.0000124062.31102.57.PubMedCrossRefGoogle Scholar
  108. 108.
    Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma. 2004;21(1):33–9. doi: 10.1089/089771504772695922.PubMedCrossRefGoogle Scholar
  109. 109.
    Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A. 2005;102(50):18171–6. doi: 10.1073/pnas.0508945102.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol. 1996;166(3):585–92. doi: 10.1002/(SICI)1097-4652(199603)166:3<585::AID-JCP13>3.0.CO;2-6.PubMedCrossRefGoogle Scholar
  111. 111.
    Labouyrie E, Dubus P, Groppi A, Mahon FX, Ferrer J, Parrens M, Reiffers J, de Mascarel A, Merlio JP. Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol. 1999;154(2):405–15. doi: 10.1016/S0002-9440(10)65287-X.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73(6):778–86. doi: 10.1002/jnr.10691.PubMedCrossRefGoogle Scholar
  113. 113.
    Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11–20. doi: 10.1006/exnr.2001.7853.PubMedCrossRefGoogle Scholar
  114. 114.
    Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res. 2004;77(2):192–204. doi: 10.1002/jnr.20147.PubMedCrossRefGoogle Scholar
  115. 115.
    Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res. 2004;77(2):174–91. doi: 10.1002/jnr.20148.PubMedCrossRefGoogle Scholar
  116. 116.
    Croft AP, Przyborski SA. Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells. Exp Neurol. 2009;216(2):329–41. doi: 10.1016/j.expneurol.2008.12.010.PubMedCrossRefGoogle Scholar
  117. 117.
    Sygnecka K, Heider A, Scherf N, Alt R, Franke H, Heine C. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model. Stem Cells Dev. 2015;24(7):824–35. doi: 10.1089/scd.2014.0262.PubMedCrossRefGoogle Scholar
  118. 118.
    Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 2001;22(3):147–84. doi: 10.1006/frne.2001.0214.PubMedCrossRefGoogle Scholar
  119. 119.
    Lee H, Kang JE, Lee JK, Bae JS, Jin HK. Bone-marrow-derived mesenchymal stem cells promote proliferation and neuronal differentiation of Niemann-Pick type C mouse neural stem cells by upregulation and secretion of CCL2. Hum Gene Ther. 2013;24(7):655–69. doi: 10.1089/hum.2013.001.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD, Suh-Kim H. Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med. 2008;40(4):387–97. doi: 10.3858/emm.2008.40.4.387.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 2002;59(4):514–23.PubMedCrossRefGoogle Scholar
  122. 122.
    Celil AB, Campbell PG. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem. 2005;280(36):31353–9. doi: 10.1074/jbc.M503845200.PubMedCrossRefGoogle Scholar
  123. 123.
    Esneault E, Pacary E, Eddi D, Freret T, Tixier E, Toutain J, Touzani O, Schumann-Bard P, Petit E, Roussel S, Bernaudin M. Combined therapeutic strategy using erythropoietin and mesenchymal stem cells potentiates neurogenesis after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2008;28(9):1552–63. doi: 10.1038/jcbfm.2008.40.PubMedCrossRefGoogle Scholar
  124. 124.
    Hosseini SM, Farahmandnia M, Razi Z, Delavarifar S, Shakibajahromi B. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation. Neural Regen Res. 2015;10(6):904–8. doi: 10.4103/1673-5374.158354.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Andrae J, Afink G, Zhang XQ, Wurst W, Nister M. Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia. Mol Cell Neurosci. 2004;26(2):308–21. doi: 10.1016/j.mcn.2004.02.004.PubMedCrossRefGoogle Scholar
  126. 126.
    Vasyutina E, Stebler J, Brand-Saberi B, Schulz S, Raz E, Birchmeier C. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes Dev. 2005;19(18):2187–98. doi: 10.1101/gad.346205.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Liu XS, Zhang ZG, Zhang RL, Gregg SR, Wang L, Yier T, Chopp M. Chemokine ligand 2 (CCL2) induces migration and differentiation of subventricular zone cells after stroke. J Neurosci Res. 2007;85(10):2120–5. doi: 10.1002/jnr.21359.PubMedCrossRefGoogle Scholar
  128. 128.
    Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739–47. doi: 10.1634/stemcells.2005-0281.PubMedCrossRefGoogle Scholar
  129. 129.
    Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, Lu M, Raginski K, Vanguri P, Smith A, Chopp M. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab. 2007;27(1):6–13. doi: 10.1038/sj.jcbfm.9600311.PubMedCrossRefGoogle Scholar
  130. 130.
    Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO, Lee PH. Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia. 2009;57(1):13–23. doi: 10.1002/glia.20731.PubMedCrossRefGoogle Scholar
  131. 131.
    Hosseini SM, Farahmandnia M, Razi Z, Delavari S, Shakibajahromi B, Sarvestani FS, Kazemi S, Semsar M. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats. Int J Stem Cells. 2015;8(1):99–105. doi: 10.15283/ijsc.2015.8.1.99.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20(3):263–72.PubMedGoogle Scholar
  133. 133.
    Bianco P, Gehron Robey P. Marrow stromal stem cells. J Clin Invest. 2000;105(12):1663–8. doi: 10.1172/JCI10413.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230–47.PubMedCrossRefGoogle Scholar
  135. 135.
    Kamei N, Tanaka N, Oishi Y, Ishikawa M, Hamasaki T, Nishida K, Nakanishi K, Sakai N, Ochi M. Bone marrow stromal cells promoting corticospinal axon growth through the release of humoral factors in organotypic cocultures in neonatal rats. J Neurosurg Spine. 2007;6(5):412–9. doi: 10.3171/spi.2007.6.5.412.PubMedCrossRefGoogle Scholar
  136. 136.
    Shichinohe H, Kuroda S, Tsuji S, Yamaguchi S, Yano S, Lee JB, Kobayashi H, Kikuchi S, Hida K, Iwasaki Y. Bone marrow stromal cells promote neurite extension in organotypic spinal cord slice: significance for cell transplantation therapy. Neurorehabil Neural Repair. 2008;22(5):447–57. doi: 10.1177/1545968308315596.PubMedCrossRefGoogle Scholar
  137. 137.
    Salomone R, Bento RF, Costa HJ, Azzi-Nogueira D, Ovando PC, Da-Silva CF, Zanatta DB, Strauss BE, Haddad LA. Bone marrow stem cells in facial nerve regeneration from isolated stumps. Muscle Nerve. 2013;48(3):423–9. doi: 10.1002/mus.23768.PubMedCrossRefGoogle Scholar
  138. 138.
    Gu W, Zhang F, Xue Q, Ma Z, Lu P, Yu B. Bone mesenchymal stromal cells stimulate neurite outgrowth of spinal neurons by secreting neurotrophic factors. Neurol Res. 2012;34(2):172–80. doi: 10.1179/1743132811Y.0000000068.PubMedGoogle Scholar
  139. 139.
    Shichinohe H, Yamauchi T, Saito H, Houkin K, Kuroda S. Bone marrow stromal cell transplantation enhances recovery of motor function after lacunar stroke in rats. Acta Neurobiol Exp (Wars). 2013;73(3):354–63.Google Scholar
  140. 140.
    Shichinohe H, Kuroda S, Yano S, Ohnishi T, Tamagami H, Hida K, Iwasaki Y. Improved expression of gamma-aminobutyric acid receptor in mice with cerebral infarct and transplanted bone marrow stromal cells: an autoradiographic and histologic analysis. J Nucl Med. 2006;47(3):486–91.PubMedGoogle Scholar
  141. 141.
    Chen J, Zacharek A, Li Y, Li A, Wang L, Katakowski M, Roberts C, Lu M, Chopp M. N-cadherin mediates nitric oxide-induced neurogenesis in young and retired breeder neurospheres. Neuroscience. 2006;140(2):377–88. doi: 10.1016/j.neuroscience.2006.02.064.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Weng JS, Liu N, Du HW, Chen RH, Zhang YX, Wang JH, Huang HP. Effects of bone marrow-derived mesenchymal stem cells transplantation on recovery of neurological functions and expression of synaptophysin in focal cerebral infarction in rats. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2008;24(1):34–7.PubMedGoogle Scholar
  143. 143.
    Huang W, Mo X, Qin C, Zheng J, Liang Z, Zhang C. Transplantation of differentiated bone marrow stromal cells promotes motor functional recovery in rats with stroke. Neurol Res. 2013;35(3):320–8. doi: 10.1179/1743132812Y.0000000151.PubMedCrossRefGoogle Scholar
  144. 144.
    Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–11.PubMedCrossRefGoogle Scholar
  145. 145.
    Tohill M, Mantovani C, Wiberg M, Terenghi G. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362(3):200–3. doi: 10.1016/j.neulet.2004.03.077.PubMedCrossRefGoogle Scholar
  146. 146.
    Andrews EM, Tsai SY, Johnson SC, Farrer JR, Wagner JP, Kopen GC, Kartje GL. Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol. 2008;211(2):588–92. doi: 10.1016/j.expneurol.2008.02.027.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, Chopp M. Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience. 2006;137(2):393–9. doi: 10.1016/j.neuroscience.2005.08.092.PubMedCrossRefGoogle Scholar
  148. 148.
    Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, Zhang Z. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9. doi: 10.1097/00004647-200009000-00006.PubMedCrossRefGoogle Scholar
  149. 149.
    Saito H, Magota K, Zhao S, Kubo N, Kuge Y, Shichinohe H, Houkin K, Tamaki N, Kuroda S. 123I-iomazenil single photon emission computed tomography visualizes recovery of neuronal integrity by bone marrow stromal cell therapy in rat infarct brain. Stroke. 2013;44(10):2869–74. doi: 10.1161/STROKEAHA.113.001612.PubMedCrossRefGoogle Scholar
  150. 150.
    Song M, Mohamad O, Gu X, Wei L, Yu SP. Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice. Cell Transplant. 2013;22(11):2001–15. doi: 10.3727/096368912X657909.PubMedCrossRefGoogle Scholar
  151. 151.
    Liu Z, Li Y, Qu R, Shen L, Gao Q, Zhang X, Lu M, Savant-Bhonsale S, Borneman J, Chopp M. Axonal sprouting into the denervated spinal cord and synaptic and postsynaptic protein expression in the spinal cord after transplantation of bone marrow stromal cell in stroke rats. Brain Res. 2007;1149:172–80. doi: 10.1016/j.brainres.2007.02.047.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Liu Z, Li Y, Zhang ZG, Cui X, Cui Y, Lu M, Savant-Bhonsale S, Chopp M. Bone marrow stromal cells enhance inter- and intracortical axonal connections after ischemic stroke in adult rats. J Cereb Blood Flow Metab. 2010;30(7):1288–95. doi: 10.1038/jcbfm.2010.8.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Liang H, Yin Y, Lin T, Guan D, Ma B, Li C, Wang Y, Zhang X. Transplantation of bone marrow stromal cells enhances nerve regeneration of the corticospinal tract and improves recovery of neurological functions in a collagenase-induced rat model of intracerebral hemorrhage. Mol Cells. 2013;36(1):17–24. doi: 10.1007/s10059-013-2306-9.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Wen L, Wen N, Wang Y, Ding Y. Effect of rat endothelial progenitor cell on proliferation and apoptosis of bone marrow mesenchymal stem cell. Zhonghua Kou Qiang Yi Xue Za Zhi. 2014;49(2):106–10.PubMedGoogle Scholar
  155. 155.
    Cui X, Chopp M, Zacharek A, Roberts C, Lu M, Savant-Bhonsale S, Chen J. Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke. Neurobiol Dis. 2009;36(1):35–41. doi: 10.1016/j.nbd.2009.06.012.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Wei ZZ, Gu X, Ferdinand A, Lee JH, Ji X, Ji XM, Yu SP, Wei L. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transplant. 2015;24(3):391–402. doi: 10.3727/096368915X686887.PubMedCrossRefGoogle Scholar
  157. 157.
    Zacharek A, Shehadah A, Chen J, Cui X, Roberts C, Lu M, Chopp M. Comparison of bone marrow stromal cells derived from stroke and normal rats for stroke treatment. Stroke. 2010;41(3):524–30. doi: 10.1161/STROKEAHA.109.568881.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25(9):1794–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Hamano K, Li TS, Kobayashi T, Kobayashi S, Matsuzaki M, Esato K. Angiogenesis induced by the implantation of self-bone marrow cells: a new material for therapeutic angiogenesis. Cell Transplant. 2000;9(3):439–43.PubMedGoogle Scholar
  160. 160.
    Shyu WC, Lin SZ, Yen PS, Su CY, Chen DC, Wang HJ, Li H. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther. 2008;324(2):834–49. doi: 10.1124/jpet.107.127746.PubMedCrossRefGoogle Scholar
  161. 161.
    Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A, Savant-Bhonsale S, Chopp M. Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells. 2007;25(11):2777–85. doi: 10.1634/stemcells.2007-0169.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Lennmyr F, Ata KA, Funa K, Olsson Y, Terent A. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol. 1998;57(9):874–82.PubMedCrossRefGoogle Scholar
  163. 163.
    Goldmacher GV, Nasser R, Lee DY, Yigit S, Rosenwasser R, Iacovitti L. Tracking transplanted bone marrow stem cells and their effects in the rat MCAO stroke model. PLoS One. 2013;8(3):e60049. doi: 10.1371/journal.pone.0060049.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Yan K, Zhang R, Sun C, Chen L, Li P, Liu Y, Peng L, Sun H, Qin K, Chen F, Huang W, Chen Y, Lv B, Du M, Zou Y, Cai Y, Qin L, Tang Y, Jiang X. Bone marrow-derived mesenchymal stem cells maintain the resting phenotype of microglia and inhibit microglial activation. PLoS One. 2013;8(12):e84116. doi: 10.1371/journal.pone.0084116.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Opydo-Chanek M, Dabrowski Z. Response of astrocytes and microglia/macrophages to brain injury after bone marrow stromal cell transplantation: a quantitative study. Neurosci Lett. 2011;487(2):163–8. doi: 10.1016/j.neulet.2010.10.014.PubMedCrossRefGoogle Scholar
  166. 166.
    Pirzad Jahromi G, Shabanzadeh Pirsaraei A, Sadr SS, Kaka G, Jafari M, Seidi S, Charish J. Multipotent bone marrow stromal cell therapy promotes endogenous cell proliferation following ischemic stroke. Clin Exp Pharmacol Physiol. 2015;42(11):1158–67. doi: 10.1111/1440-1681.12466.PubMedCrossRefGoogle Scholar
  167. 167.
    el Gornicka-Pawlak B, Janowski M, Habich A, Jablonska A, Drela K, Kozlowska H, Lukomska B, Sypecka J, Domanska-Janik K. Systemic treatment of focal brain injury in the rat by human umbilical cord blood cells being at different level of neural commitment. Acta Neurobiol Exp (Wars). 2011;71(1):46–64.Google Scholar
  168. 168.
    Shen LH, Li Y, Chopp M. Astrocytic endogenous glial cell derived neurotrophic factor production is enhanced by bone marrow stromal cell transplantation in the ischemic boundary zone after stroke in adult rats. Glia. 2010;58(9):1074–81. doi: 10.1002/glia.20988.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Xin H, Li Y, Chen X, Chopp M. Bone marrow stromal cells induce BMP2/4 production in oxygen-glucose-deprived astrocytes, which promotes an astrocytic phenotype in adult subventricular progenitor cells. J Neurosci Res. 2006;83(8):1485–93. doi: 10.1002/jnr.20834.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Zhang J, Li Y, Zheng X, Gao Q, Liu Z, Qu R, Borneman J, Elias SB, Chopp M. Bone marrow stromal cells protect oligodendrocytes from oxygen-glucose deprivation injury. J Neurosci Res. 2008;86(7):1501–10. doi: 10.1002/jnr.21617.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Shen Q, Yin Y, Xia QJ, Lin N, Wang YC, Liu J, Wang HP, Lim A, Wang TH. Bone marrow stromal cells promote neuronal restoration in rats with traumatic brain injury: involvement of GDNF regulating BAD and BAX signaling. Cell Physiol Biochem. 2016;38(2):748–62. doi: 10.1159/000443031.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Hongxia Zhang
    • 1
  • Shengwei Huang
    • 1
  • Jiangnan Hu
    • 1
  • Brian Wang
    • 1
  • Kunlin Jin
    • 2
    Email author
  1. 1.Center for Neuroscience Discovery, Institute for Healthy AgingUniversity of North Texas Health Science CenterFort WorthUSA
  2. 2.Department of Pharmacology NeuroscienceUniversity of North Texas Health Science CenterFort WorthUSA

Personalised recommendations