Skip to main content

Mobility Analysis of Generalized Mechanisms via Screw Algebra

  • Conference paper
  • First Online:
Mechanism and Machine Science (ASIAN MMS 2016, CCMMS 2016)

Abstract

Compared with traditional mechanisms, a new class of mechanism considering both the rigid and the flexible elements is proposed to satisfy the demands of modern engineering in this paper. This class of mechanism is named as generalized mechanism, and they consists of generalized links and kinematic pairs. First, based on screw algebra, we derive the motion spaces of generalized links and the constraint spaces of generalized kinematic pairs. Then, we analyze the minimal and maximal mobilities of generalized links, as well as the minimal and maximal constraints of generalized kinematic pairs. Finally, three formulas for calculating the degree of freedom (DOF) of generalized mechanisms are established. The analytical results show that the DOF of each generalized mechanism is not unique, but an interval value. The real DOF of generalized mechanisms depends on both the links’ materials, the magnitude and direction of external loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarthy JM (2013) 21st century kinematics. Springer, Berlin

    Book  Google Scholar 

  2. Gogu G (2009) Structural synthesis of parallel robots: part 1: methodology. Springer, Oshawa

    Book  MATH  Google Scholar 

  3. Howell LL (2001) Compliant mechanisms. Wiley, New York

    Google Scholar 

  4. Dai JS, Jones JR (1999) Mobility in metamorphic mechanisms of foldable/erectable kinds. J Mech Des 121(3):375–382

    Article  Google Scholar 

  5. Baker JE (1978) Overconstrained 5-bars with parallel adjacent joint axes—I method of analysis. Mech Mach Theory 13(2):213–218

    Article  Google Scholar 

  6. Arsenault M, Gosselin CM (2006) Kinematic, static and dynamic analysis of a planar 2-DOF tensegrity mechanism. Mech Mach Theory 41(9):1072–1089

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang D (2010) Parallel robotic machine tools. Springer, Oshawa

    Book  Google Scholar 

  8. Howell LL, McLain TW, Baker MS, Lott CD (2006) MEMS/NEMS handbook, techniques and applications. Springer, New York

    Google Scholar 

  9. Ying M, Sunil K (2012) Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Trans Rob 28(4):922–931

    Article  Google Scholar 

  10. Darwin L, Denny O, Saman KH (2013) Generalized modeling of multilink cable-driven manipulators with arbitrary routing using the cable-routing matrix. IEEE Trans Rob 29(5):1102–1113

    Article  Google Scholar 

  11. Hermann R (1999) ARTEMIS: a telemanipulator for cardiac surgery. Eur J Cardiothorac Surg 16(2):S106–S111

    Google Scholar 

  12. Schurr MO, Buess G, Neisius B, Voges U (2000) Robotics and telemanipulation technologies for endoscopic surgery. Surg Endosc 14(4):375–381

    Article  Google Scholar 

  13. Parag WD, Michele D, Joel L, Jacques M (2011) Minimally invasive single-site surgery for the digestive system: a technological review. J Minim Access Surg 7(1):40–51

    Google Scholar 

  14. Haber GP, Autorino R, Laydner H, Yang B, White MA, Hillyer S, Altunrende F, Khanna R, Spana G, Wahib I, Fareed K, Stein RJ, Kaouk JH (2012) SPIDER surgical system for urologic procedures with laparoendoscopic single-site surgery: from initial laboratory experience to first clinical application. Eur Urol 61(2):415–422

    Article  Google Scholar 

  15. Tibert G (2002) Deployable tensegrity structures for space applications. Royal Institute of Technology, Stockholm

    Google Scholar 

  16. Miura K, Miyazaki Y (1990) Concept of the tension truss antenna. AIAA J 28(6):1098–1104

    Article  Google Scholar 

  17. Li TJ (2012) Deployment analysis and control of deployable space antenna. Aerosp Sci Technol 18(1):42–47

    Article  Google Scholar 

  18. Thomson MW (1999) The astromesh deployable reflector. In: Proceedings of IEEE of antennas and propagation society international symposium, pp 1516–1519

    Google Scholar 

  19. Gulyaev VI, Gaidaichuk VV, Chernyavskii AG, Scialino L (2003) Dynamic behavior of a large deployable reflector. Int Appl Mech 39(9):1084–1088

    Article  Google Scholar 

  20. Meguro A, Tsujihata A, Hamamoto N, Homma M (2000) Technol-ogy status of the 13 m aperture deployment antenna reflectors for engineering test satellite VIII. Acta Astronaut 47(2–9):147–152

    Article  Google Scholar 

  21. Gogu G (2005) Mobility of mechanisms: a critical review. Mech Mach Theory 40(9):1068–1097

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang Z, Li QC (2003) Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method. Int J Robot Res 22(1):59–79

    Google Scholar 

  23. Her I, Midha A (1987) A compliance number concept for compliant mechanisms, and type synthesis. J Mech Des 109(3):348–357

    Google Scholar 

  24. Chen GM, Li DL (2010) Degree of freedom of planar compliant mechanisms. J Mech Eng 46(13):48–53

    Article  Google Scholar 

  25. Su HJ, Dorozhkin DV, Vance JM (2009) A screw theory approach for the conceptual design of flexible joints for compliant mechanisms. J Mech Robot 105(4):469–484

    Google Scholar 

  26. Su HJ, Tari H (2010) Realizing orthogonal motions with wire flexures connected in parallel. J Mech Des 132(12):121002–121008

    Article  Google Scholar 

  27. Su HJ (2011) Mobility analysis of flexure mechanisms via screw algebra. J Mech Robot 3(4):04101–041010

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (Grant No. 51375360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuanjie Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Li, T., Deng, H., Zhang, L. (2017). Mobility Analysis of Generalized Mechanisms via Screw Algebra. In: Zhang, X., Wang, N., Huang, Y. (eds) Mechanism and Machine Science . ASIAN MMS CCMMS 2016 2016. Lecture Notes in Electrical Engineering, vol 408. Springer, Singapore. https://doi.org/10.1007/978-981-10-2875-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2875-5_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2874-8

  • Online ISBN: 978-981-10-2875-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics