Growth Promotion Features of the Maize Microbiome: From an Agriculture Perspective

  • Ubiana de Cássia Silva
  • Christiane Abreu de Oliveira
  • Ubiraci Gomes de Paula Lana
  • Eliane Aparecida Gomes
  • Vera Lúcia dos Santos
Chapter

Abstract

Microorganisms associated to maize can present a diversity in its composition according to maize genotype and soil properties, such as pH, texture, water availability, nutritional status, weather conditions, and agricultural practices.These microorganisms can stimulate plant growth by nutrients acquisition in poor soils through nitrogen fixation, phosphate solubilizing, phytate mineralization besides of the phytohormone production that help in the survival stress and can stimulate growth of plant parts several. Some molecules produced by microrganisms inhibits the action of phytopathogenic agents or can induce the plant resistance. Thus, the maize microbiome investigation can contribute for prospecting of microorganisms with potential for use as plant inoculant focused on the development of cheaper, environmentally-sound and sustainable agricultural techniques.

References

  1. Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agric Ecosyst Environ 35:121–150CrossRefGoogle Scholar
  2. Aira M, Gómez-Brandón M, Lazcano C, Baath E, Domínguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42:2276–2281CrossRefGoogle Scholar
  3. Akladious SA, Abbas SM (2012) Application of Trichoderma harziunum T22 as a biofertilizer supporting maize growth. Afr J Biotechnol 11:8672–8683Google Scholar
  4. Akram W, Anjum T, Ali B (2016) Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162, Which involves extensive re-modulation in metabolomics of tomato to protect against Fusarium Wilt. Front Plant Sci 7. Doi: 10.3389/fpls.2016.00498
  5. Aleti G, Sessitsch A, Brader G (2015) Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput Struct Biotechnol J 24:192–203CrossRefGoogle Scholar
  6. Alves L, Oliveira VL, Silva Filho GN (2010) Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt. Braz J Microbiol 41:676–684CrossRefGoogle Scholar
  7. Alves GC, Videira SS, Urquiaga S, Reis VM (2015) Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant Soil 387:307–321CrossRefGoogle Scholar
  8. Araújo EO, Martins MR, Mercante FM, Vitorino ACT, Urquiaga SS (2014) Herbaspirillum seropedicae inoculation and nitrogen fertilization on nitrogen use efficiency of different maize genotypes. Afr J Agric Res 9:3025–3031CrossRefGoogle Scholar
  9. Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 108:1288–1293Google Scholar
  10. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  11. Balachandar D et al (2006) Flavonoids and growth hormones influence endophytic colonization and in plant nitrogen fixation by a diazotrophic Serratia sp. in rice. World J Microbiol Biotechnol 22:707–712CrossRefGoogle Scholar
  12. Baldani VL et al (1986) Establishment of inoculated Azospirillum spp in the rhizosphere and in roots of field grown wheat and sorgum. Plant Soil 90:35–46CrossRefGoogle Scholar
  13. Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743CrossRefGoogle Scholar
  14. Barreteau H, Tiouajni M, Graille M et al (2012) Functional and structural characterization of PaeM, a Colicin M-like bacteriocin produced by Pseudomonas aeruginosa. J Biol Cement 287:37395–37405Google Scholar
  15. Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255CrossRefGoogle Scholar
  16. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051PubMedPubMedCentralCrossRefGoogle Scholar
  17. Berbara RLL, Souza FA, Fonseca HMAC (2006) Fungos micorrízicos arbusculares: Muito além da nutrição. In: Fernandes MS (ed) Nutrição mineral de plantas. Sociedade Brasileira de Ciência do Solo, Viçosa, MG, pp 54–79Google Scholar
  18. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13PubMedCrossRefGoogle Scholar
  19. Berrocal-wolf M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32Google Scholar
  20. Bomke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893PubMedCrossRefGoogle Scholar
  21. Bouffaud ML, Kyselkova M, Gouesnard B, Grundmann G, Muller D, Moenne-Loccoz Y (2012) Is diversification history of maize influencing selection of soil bacteria by roots? Mol Ecol 21:195–206PubMedCrossRefGoogle Scholar
  22. Bucking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587–612CrossRefGoogle Scholar
  23. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838PubMedCrossRefGoogle Scholar
  24. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84CrossRefGoogle Scholar
  25. Cascales E, Buchanan SK, Duché D et al (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229PubMedPubMedCentralCrossRefGoogle Scholar
  26. Castellanos T, Dohrmann AB, Imfeld G, Baumgarte S, Tebbe CC (2009) Search of environmental descriptors to explain the variability of the bacterial diversity from maize rhizospheres across a regional scale. Eur J Soil Biol 45:383–393CrossRefGoogle Scholar
  27. Chabot R, AntouN H, Kloepper JW, Beauchamp CJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar. phaseoli. Appl Environ Microbiol 62:2767–2772PubMedPubMedCentralGoogle Scholar
  28. Chauhan PS, Chaudhry V, Mishra S, Nautiyal CS (2011) Uncultured bacterial diversity in tropical maize (Zea mays L.) rhizosphere. J Basic Microbiol 51:15–32PubMedCrossRefGoogle Scholar
  29. Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263PubMedCrossRefGoogle Scholar
  30. Chen XH, Koumoutsi A, Scholz R et al (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37PubMedCrossRefGoogle Scholar
  31. Cherif A, Chehimi S, Limem F et al (2003) Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J Appl Microbiol 95:990–1000PubMedCrossRefGoogle Scholar
  32. Chrzanowski L, Ławniczak L, Czaczyk K (2012) Why do microorganisms produce rhamnolipids? World J Microbiol Biotechnol 28:401–419PubMedCrossRefGoogle Scholar
  33. Chu Q, Wang X, Yang Y, Chen F, Zhang F, Feng G (2013) Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza 23:497–505PubMedCrossRefGoogle Scholar
  34. Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462CrossRefGoogle Scholar
  35. Compant S, Clément C, Sessitsch A et al (2010) Plant growth-promoting bacteria in the rhizo and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  36. Correa A, Cruz C, Ferrol N (2015) Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Mycorrhiza 25:499–515PubMedCrossRefGoogle Scholar
  37. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105PubMedCrossRefGoogle Scholar
  38. Coutinho FP, Felix WP, Yano-Melo AM (2012) Solubilization of phosphates in vitro by Aspergillus spp. and Penicillium spp. Ecol Eng 42:85–89CrossRefGoogle Scholar
  39. Cozzolino V, Dimeo V, Piccolo A (2013) Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. J Geochem Explor 129:40–44CrossRefGoogle Scholar
  40. Davies PJ (2010) Regulatory factors in hormone action: level, location and signal transduction. In: Plant hormones. Springer, Dordrecht, pp 16–35CrossRefGoogle Scholar
  41. De Vleesschauwer D, Maizeelis P, Hofte M (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant-Microbe Interact 19:1406–1419PubMedCrossRefGoogle Scholar
  42. Dhawi F, Datta R, Ramakrishna W (2015) Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil. Plant Physiol Biochem 97:390–399PubMedCrossRefGoogle Scholar
  43. Didonet DA, Lima OS, Candaten MH, Rodrigues O (2000) Realocação de nitrogênio e de biomassa para os grãos, em trigo submetido à inoculação de Azospirillum. Pesq Agropec Bras 35:401–411CrossRefGoogle Scholar
  44. Dimkpa C, Svatos A, Merten D, Buchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172PubMedCrossRefGoogle Scholar
  45. Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiestand A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto BS (2001) Responses of agronomically important crops to inoculation with Azospirillum. Funct Plant Biol 28:871–879CrossRefGoogle Scholar
  47. Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379CrossRefGoogle Scholar
  48. Donato VMTS, Andrade AG, Takaki GMC, Mariano RLR, Maciel GA (2005) Plantas de cana-de-açúcar cultivadas in vitro com antibióticos. Ciência e Agrotecnologia 29:134–141CrossRefGoogle Scholar
  49. Elsharkawy MM, Mousa KM (2015) Induction of systemic resistance against Papaya ring spot virus (PRSV) and its vector Myzus persicae by Penicillium simplicissimum GP17–2 and silica (Sio 2) nanopowder. Int J Pest Manag 61:353–358CrossRefGoogle Scholar
  50. Fan L, Fu K, Yu C, Li Y, Li Y, Chen J (2015) Thc6 protein, isolated from Trichoderma harzianum, can induce maize defense response against Curvularia lunata. J Basic Microbiol 55:591–600PubMedCrossRefGoogle Scholar
  51. Fang R, Lin J, Yao S, Wang Y, Wang J, Zhou C, Wang H, Xiao M (2013) Promotion of plant growth, biological control and induced systemic resistance in maize by Pseudomonas aurantiaca JD37. Ann Microbiol 63:1177–1185CrossRefGoogle Scholar
  52. Favret ME, Yousten AA (1989) Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol 53:206–216PubMedCrossRefGoogle Scholar
  53. Faye A, Dalpe Y, Ndung’u-Magiroi K, Jefwa J, Ndoye ID, Lesueur D (2013) Evaluation of commercial arbuscular mycorrhizal inoculants on maize in Kenya. Can J Plant Sci 93:1201–1208CrossRefGoogle Scholar
  54. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364PubMedCrossRefGoogle Scholar
  55. Fisher PJ, Petrini O, Scott HML (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 122:299–305CrossRefGoogle Scholar
  56. Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a ß-1, 3 glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221CrossRefGoogle Scholar
  57. Gaby JC, Buckley DHA (2012) Comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLos One 7:e42149PubMedPubMedCentralCrossRefGoogle Scholar
  58. Giauque H, Hawkes CV (2013) Climate affects symbiotic fungal endophyte diversity and performance. Am J Bot 100:1435–1444PubMedCrossRefGoogle Scholar
  59. Giovanelli J, Mudd SH, Datko AH (1980) Sulfur amino acids in plants. In: Miflin BJ (ed) Amino acids and derivatives in the biochemistry of plants: a comprehensive treatise. Academic Press, New York, pp 453–505CrossRefGoogle Scholar
  60. Goldstein A, Lester T, Brown J (2003) Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases. Biochem Biophys Acta 1647:266–271PubMedGoogle Scholar
  61. Gomes NCM, Heuer H, Schonfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180CrossRefGoogle Scholar
  62. Gomes EA, Silva UC, Marriel IE, Oliveira CA, Lana UGP (2014) Rock phosphate solubilizing microorganisms isolated from maize rhizosphere soil. Revista brasileira de Milho e Sorgo 13:69–81CrossRefGoogle Scholar
  63. Gong AD, Li HP, Yuan QS, Song XS, Yao W, He WJ, Liao YC (2015) Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10, e0116871PubMedPubMedCentralCrossRefGoogle Scholar
  64. Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252CrossRefGoogle Scholar
  65. Govindarajan M, Kwon SW, Weon HY (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23:997–1006CrossRefGoogle Scholar
  66. Greiner R (2006) Phytate-degrading enzymes: regulation of synthesis in microorganisms and plants. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and environment. CAB International, London, pp 78–96Google Scholar
  67. Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19CrossRefGoogle Scholar
  68. Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242PubMedCrossRefGoogle Scholar
  69. Hardoim PR, Van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471PubMedCrossRefGoogle Scholar
  70. Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, Van Overbeek LS, Van Elsas JD (2011) Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol Ecol 77:154–164PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hoffman MT, Arnold AE (2008) Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycol Res 112:331–344PubMedCrossRefGoogle Scholar
  72. Hu J, Lin X, Wang J, Dai J, Cui X, Chen R, Zhang J (2009) Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): a field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biol Biochem 41:2460–2465CrossRefGoogle Scholar
  73. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425CrossRefGoogle Scholar
  74. Hungria M, Nogueira MA, Araujo RS (2015) Alternative methods of soybean inoculation to overcome adverse conditions at sowing. Afr J Agric Res 10:2329–2338CrossRefGoogle Scholar
  75. Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:20396–20396CrossRefGoogle Scholar
  76. Johnston-Monje D, Lundberg D S, Lazarovits G, Reis V M, Raizada M N (2016) Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant and Soil 405:1–19Google Scholar
  77. Jorguera MA, Crowley DE, Marschner P, Greiner R, Fernandez MT, Romero D, Menezes-Blackburn D, Mora ML (2011) Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol Ecol 75:163–172CrossRefGoogle Scholar
  78. Kamoun F, Mejdoub H, Aouissaoui H et al (2005) Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J Appl Microbiol 98:881–888PubMedCrossRefGoogle Scholar
  79. Kaur G, Reddy MS (2015) Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere 25:428–437CrossRefGoogle Scholar
  80. Khalil MY, Naguib NY, El-Sherbeny SE (2002) Response of Tagetes erecta L. to compost and foliar application of some microelements. Arab Univ J Agric Sci, Ain Shams Univ, Cairo 10:939–964Google Scholar
  81. Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58Google Scholar
  82. Kim CH, Han SH, Kim KY, Cho BH, Kim YH, Koo BS (2003) Cloning and expression of Pyrroloquinoline Quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Curr Microbiol 47:457–461PubMedGoogle Scholar
  83. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85PubMedCrossRefGoogle Scholar
  84. Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Microbial endophytes. Marcel Dekker Inc., New York, pp 199–233Google Scholar
  85. Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64: 2541–2555Google Scholar
  86. Krewulak HD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804PubMedCrossRefGoogle Scholar
  87. Kuan KB, Othman R, Abdul-Rahim K, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of Maize under greenhouse conditions. PLoS One 11:e0152478PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugate: a suitable bacterial inoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39:3093–3100CrossRefGoogle Scholar
  89. Kumar S, Chauhan PS, Agrawal L, Raj R, Srivastava A, Gupta S, Mishra S K, Yadav S, Singh PC, Raj SK, Nautiyal CS (2016) Paenibacillus lentimorbus inoculation enhances tobacco growth and extenuates the virulence of Cucumber mosaic virus. PLoS One 11:e0149980Google Scholar
  90. Lamdan NL, Shalaby S, Ziv T, Kenerley CM, Horwitz BA (2015) Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Mol Cell Proteomics 14:1054–63PubMedPubMedCentralCrossRefGoogle Scholar
  91. Leggett M, Cross J, Hnatowich G, Holloway G (2007) Challenges in commercializing a phosphate-solubilizing microorganism: Penicillium bilaiae, a case history. In: Velázquez E, Rodrıguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization, pp 215–222Google Scholar
  92. Li X, Rui J, Mao Y, Yannarell A, Mackie R (2014) Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol Biochem 68:392–401CrossRefGoogle Scholar
  93. Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618PubMedCrossRefGoogle Scholar
  94. Lodewyckx C et al (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606CrossRefGoogle Scholar
  95. Loper JE, Buyer JS (1991) Siderophores in microbial interactions of plant surfaces. Mol Plant-Microbe Interact 4:5–13CrossRefGoogle Scholar
  96. Lopes-Assad M, Avansini SH, Rosa MM, Carvalho JRP, Antonini SRC (2010) The solubilization of potassium-bearing rock powder by Aspergillus niger in small-scale batch fermentations. Can J Microbiol 56:598–605PubMedCrossRefGoogle Scholar
  97. Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) Jasmonate-insensitive1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lucangeli C, Bottini R (1997) Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 23:63–72Google Scholar
  99. Ludwig-Müller J, Kaldorf M, Sutter EG, Epstein E (1997) Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plant Sci 125:153–162CrossRefGoogle Scholar
  100. Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86PubMedPubMedCentralCrossRefGoogle Scholar
  101. Luongo L, Galli M, Corazza L, Meekes E, De Haas L, Van der Plas CL, Kohl J (2005) Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol Sci Tech 15:229–242CrossRefGoogle Scholar
  102. Malusa A, Pinzari E, Canfora F, Singh L, Singh PD, Prabha BH (2016) Efficacy of biofertilizers: challenges to improve crop production. In: Microbial inoculants in sustainable agricultural productivity, vol 2. 978-81-322-2644-4Google Scholar
  103. Mander C, Wakelin S, Young S, Condron I, O’Callaghan M (2012) Incidence and diversity of phosphate-solubilizing bacteria are linked to phosphorus status in grassland soils. Soil Biol Biochem 44:93–101CrossRefGoogle Scholar
  104. Manzoor M, Kaleem Abbasi M, Sultan T (2016) Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization–mineralization and plant growth promotion. Geomicrobiol J. doi:10.1080/01490451.2016.1146373 Google Scholar
  105. Marra LM (2012) Solubilização de fosfato por bactérias e sua contribuição no crescimento de leguminosas e gramíneas. 142f. Tese (Doutorado em Ciência do solo). Universidade Federal de Lavras, Lavras – MGGoogle Scholar
  106. Marriel IE, Coelho AM, Guimaraes LJM, Guimaraes PE, Pacheco CA, Magalhaes PC, Oliveira AC (2008) Bactérias diazotróficas selecionadas contribuem com economia de fertilizantes nitrogenados em milho In: Simpósio sobre inovação e criatividade científica na Embrapa, 1., 2008, Brasília, DF. Resumos. Embrapa, Brasília, DFGoogle Scholar
  107. Mazzotta AS, Crandall AD, Montville TJ (1997) Nisin resistance in Clostridium botulinum spores and vegetative cells. Appl Environ Microbiol 63:2654–2659PubMedPubMedCentralGoogle Scholar
  108. McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet maize. Plant Soil 173:337–342CrossRefGoogle Scholar
  109. McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) The chemical nature of P accumulation in agricultural soils—implications for fertiliser management and design: an Australian perspective. Plant Soil 349:69–87CrossRefGoogle Scholar
  110. Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K + availability in agricultural soils? Microbiol Res 169:337–347PubMedCrossRefGoogle Scholar
  111. Mei L, Liang Y, Zhang L, Wang Y, Guo Y (2014) Induced systemic resistance and growth promotion in tomato by an indole-3-acetic acid-producing strain of Paenibacillus polymyxa. Ann Appl Biol 165:270–279CrossRefGoogle Scholar
  112. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant-beneficial, plant-pathogenic and human-pathogenic microorganisms. FEMS Microbiol RevGoogle Scholar
  113. Mendonça MM, Urquiaga SS, Reis VM (2006) Variabilidade genotípica de milho para acumulação de nitrogênio e contribuição da fixação biológica de nitrogênio. Pesq Agrop Brasileira 41:1681–1685CrossRefGoogle Scholar
  114. Mensah JA, Koch AM, Antunes PM, Hart MM, Kiers ET, Bücking H (2015) High functional diversity within arbuscular mycorrhizal fungal species is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza 25:533–546PubMedCrossRefGoogle Scholar
  115. Miche L, Battistoni FJ, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant-Microbe Interact 19:502–511PubMedCrossRefGoogle Scholar
  116. Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510PubMedCrossRefGoogle Scholar
  117. Miliute I, Buzaite O, Baniulis D, Stanys V (2015) Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture 102:465–478CrossRefGoogle Scholar
  118. Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67(2):725–732PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mohamed AA, Eweda WEE, Heggo AM, Hassan EA (2014) Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under green house conditions. Ann Agric Sci 59:109–118Google Scholar
  120. Montanez A, Abreu C, Gill PR, Hardarson G, Sicardi M (2009) Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope dilution and identification of associated culturable diazotrophs. Biol Fertil Soils 45:253–263CrossRefGoogle Scholar
  121. Montanez A, Rodriguez Blanco A, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28CrossRefGoogle Scholar
  122. Moore JW, Loake GJ, Spoel SH (2011) Transcription dynamics in plant immunity. Plant Cell 23:2809–2820PubMedPubMedCentralCrossRefGoogle Scholar
  123. Mousa WK, Shearer CR, Limay-Rios V, Zhou T, Raizada MN (2015) Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation. Front Plant Sci 6:805PubMedPubMedCentralGoogle Scholar
  124. Mudge SR, Frank WS, Richardson AE (2003) Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. Plant Sci 165:871–878CrossRefGoogle Scholar
  125. Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158(1):155–165PubMedCrossRefGoogle Scholar
  126. Murray JD et al (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104PubMedCrossRefGoogle Scholar
  127. Naghmouchi K, Hammami R, Fliss I, Teather R, Baah J, Drider D (2012) Colistin A and colistin B among inhibitory substances of Paenibacillus polymyxa JB05-01-1. Arch Microbiol 194:363–370PubMedCrossRefGoogle Scholar
  128. Nakayama K, Takashima K, Ishihara H et al (2000) The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38:213–231PubMedCrossRefGoogle Scholar
  129. Naveed M, Qureshi MA, Zahir ZA, Hussain MB, Sessitsch A, Mitter B (2015) L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN. Ann Microbiol 65:1381–1389CrossRefGoogle Scholar
  130. Nayaka C, Niranjana SR, Uday ACS, Reddy MS, Prakash HS, Mortensen CN (2010) Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Arch Phytopathol Plant Protect 43:264–282CrossRefGoogle Scholar
  131. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedCrossRefGoogle Scholar
  132. Novais RF, Smyth TJ (1999) Fósforo em solo e planta em condições tropicais. Universidade Federal de Viçosa, Viçosa. 399pGoogle Scholar
  133. Nunes FS, Raimondi AC, Niedwieski AC (2003) Fixação de nitrogênio: estrutura, função e modelagem bioinorgânica das nitrogenases. Quim Nova 26:872–879CrossRefGoogle Scholar
  134. Ogbo FC (2010) Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresour Technol 101:4120–4124PubMedCrossRefGoogle Scholar
  135. Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MRSM, Carneiro NM, Guimarães CT, Schaffert RE, Sá NMA (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the brazilian cerrado biome. Soil Biol Biochem 25:1–6Google Scholar
  136. Oliveira CA, Marriel IE, Gomes EA, Mattos BB, Santos FC, Oliveira MC, Alves VMC (2013) Metodologia de aplicação de microrganismos solubilizadores de fósforo em sementes visando melhor aproveitamento deste nutriente pelas plantas. Sete Lagoas: Embrapa Milho e Sorgo, 25 p. (Embrapa Milho e Sorgo. Boletim de Pesquisa e Desenvolvimento, 88)Google Scholar
  137. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090PubMedCrossRefGoogle Scholar
  138. Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in the biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88Google Scholar
  139. Paik HD, Bae SS, Park SH, Pan JG (1997) Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp tochigiensis. J Ind Microbiol Biotechnol 19:294–298PubMedCrossRefGoogle Scholar
  140. Pal KK, Tilak KV, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–23PubMedCrossRefGoogle Scholar
  141. Parret AHA, Schoofs G, Proost P, De Mot R (2003) Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 185:897–908PubMedPubMedCentralCrossRefGoogle Scholar
  142. Patil et al (2016) Microbial inoculants in sustainable agricultural productivity, vol 1. Springer, New Delhi, pp 319–343Google Scholar
  143. Peiffer J et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553PubMedPubMedCentralCrossRefGoogle Scholar
  144. Pereira F, Ibañez M, Rosenblueth M, Etcheverry E, Martínez-Romero (2011) Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. International Scholarly Research Network Ecology – ISRN, 10 pGoogle Scholar
  145. Perin L et al (2006) Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl Environ Microbiolo 72:3103–3110Google Scholar
  146. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799PubMedCrossRefGoogle Scholar
  147. Picard C, Bosco M (2005) Maize heterosis affects the structure and dynamics of indigenous rhizospheric auxins-producing Pseudomonas populations. FEMS Microbiol Ecol 53:349–357. doi:10.1016/j.femsec.2005.01.007
  148. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Ann Rev Cell Dev Biol 28:489–521CrossRefGoogle Scholar
  149. Planchamp C, Glauser G, Mauch-Mani B (2014) Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front Plant Sci 5:719PubMedGoogle Scholar
  150. Prajapati KB, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leaflets 5:71–75Google Scholar
  151. Press CM, Wilson M, Tuzun S, Kloepper JW (1997) SA produced by S. marcescens 90–166 is not the primary determinant of ISR in cucumber/ tobacco. Mol Plant-Microbe Interact 10:761–768CrossRefGoogle Scholar
  152. Radzki W, Manero FG, Algar E, Garcia JL, Garcia VA, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330PubMedPubMedCentralCrossRefGoogle Scholar
  153. Rai R, Dash PK, Prasanna BM, Singh A (2007) Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World J Microbiol Biotechnol 23:853–858CrossRefGoogle Scholar
  154. Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole PS (2011) Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizosphere investigated by comparative transcriptomics. Genome Biol 12:106–106CrossRefGoogle Scholar
  155. Raza FA, Faisal M (2013) Growth promotion of maize by desiccation tolerant Micrococcus luteus-chp37 isolated from Cholistan desert, Pakistan. AJCS 7:1693–1698Google Scholar
  156. Raza W, Yuan J, Ling N, Huang Q, Shen Q (2015) Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. Niveum.Google Scholar
  157. Reitz M, Oger P, Meyer A, Niehaus K, Farrand SK, Hallmann J, Sikora RA (2002) Importance of the O-antigen, core-region and lipid A of rhizobial LPS for the induction of SR in potato to Globodera pallida. Nematology 4:73–79CrossRefGoogle Scholar
  158. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996PubMedPubMedCentralCrossRefGoogle Scholar
  159. Richardson AE, Barea J, Mcneill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  160. Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Funct Plant Biol 28:829–836CrossRefGoogle Scholar
  161. Riley MA (1998) Molecular mechanisms of bacteriocin evolution. Annu Rev Genet 32:255–278Google Scholar
  162. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Ann Rev Microbiol 56:117–137CrossRefGoogle Scholar
  163. Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21CrossRefGoogle Scholar
  164. Roesch LFW, Camargo FA, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104CrossRefGoogle Scholar
  165. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837PubMedCrossRefGoogle Scholar
  166. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026PubMedPubMedCentralCrossRefGoogle Scholar
  167. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–16PubMedPubMedCentralCrossRefGoogle Scholar
  168. Sahu PK, Brahmaprakash GP (2016) Formulations of biofertilizers–approaches and advances. In Microbial inoculants in sustainable agricultural productivity. Springer, New York, pp 179–198Google Scholar
  169. Saia S, Benitéz E, Garcia-Garrido JM, Settanni L, Amato G, Giambalvo D (2014) The effect of arbuscular mycorrhizal fungi on total plant nitrogen uptake and nitrogen recovery from soil organic material. J Agric Sci 152:370–378CrossRefGoogle Scholar
  170. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343CrossRefGoogle Scholar
  171. Salla TD, Astarita LV, Santarém ER (2016) Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea. Planta 243:1055–1070PubMedCrossRefGoogle Scholar
  172. Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault JH, Clément C, Dorey S (2012) Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol 160:1630–1641PubMedPubMedCentralCrossRefGoogle Scholar
  173. Santos F, Peñaflor MFG, Paré PW, Sanches PA, Kamiya AC, Tonelli M, Bento JMS (2014) A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa. PLoS One 9:e113280PubMedPubMedCentralCrossRefGoogle Scholar
  174. Santner A, Estelle M (2010) The ubiquitin‐proteasome system regulates plant hormone signaling. Plant J 61:1029–1040PubMedPubMedCentralCrossRefGoogle Scholar
  175. Sathya A, Gopalakrishnan R, Singh S, Dhananjaya P (2016) Soil microbes: the invisible managers of soil fertility. In: Singh BH, Ratna P (eds) Microbial inoculants in sustainable agricultural productivity, vol 2. Springer, New Delhi, pp 1–16Google Scholar
  176. Saxena A, Raghuwanshi R, Singh HB (2015) Elevation of defense network in Chilli against Colletotrichum capsici by Phyllospheric Trichoderma strain. J Plant Growth Regul 35:1–13Google Scholar
  177. Schmalenberger A, Tebbe CC (2002) Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore. FEMS Microbiol Ecol 40:29–37PubMedCrossRefGoogle Scholar
  178. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56PubMedCrossRefGoogle Scholar
  179. Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482PubMedPubMedCentralCrossRefGoogle Scholar
  180. Sharma VK, Nowak J (1998) Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can J Microbiol 44:528–536CrossRefGoogle Scholar
  181. Silva MF, Souza AC, Oliveira PJ (2012) Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant Soil 356:231–243CrossRefGoogle Scholar
  182. Silva UC, Mendes GO, Silva NMR, Duarte JL, Silva IR, Tótola MR, Costa MD (2014) Fluoride-tolerant mutants of Aspergillus niger show enhanced phosphate solubilization capacity. PLoS One 9, e110246PubMedPubMedCentralCrossRefGoogle Scholar
  183. Silva UC, Marriel IE, Oliveira CA, Gomes EA, Rezende AV, Lana UGP (2015) Biossolubilização de Potássio In Vitro a Partir da Rocha Fonolito por Microrganismos do Solo. Série Documentos, Embrapa Milho e Sorgo, 177–7Google Scholar
  184. Singh BH, Ratna P (2016) Microbial inoculants in sustainable agricultural productivity: vol. 2: Functional applications. Springer, New Delhi, 308 pGoogle Scholar
  185. Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33:1236–1251CrossRefGoogle Scholar
  186. Siqueira JO, Franco AA (1988) Biotecnologia do solo: fundamentos e perspectivas. MEC Ministério da Educação, ABEAS/ESAL, FAEPE, Brasília/Lavras, 236 pGoogle Scholar
  187. Smyth E (2011) Selection and analysis of bacteria on the basis of their ability to promote plant development and growth. PhD thesis, University College DublinGoogle Scholar
  188. Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of Leu(7)-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J Agric Food Chem 57:4287–4292PubMedCrossRefGoogle Scholar
  189. Sobrinho CA, Ferreira PTO, Cavalcanti LS, Indutores Abióticos (2005) In: Cavalcanti LS, Di Piero RM, Cia P, Pascholati SF, Resende MLV, Romeiro RS, Piracicaba SP (eds) Indução de Resistência em plantas a patógenos e insetos. FEALQ, pp 51–80Google Scholar
  190. Souza R, Ambrosini A, Passaglia LMP (2015) Passaglia plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419PubMedPubMedCentralCrossRefGoogle Scholar
  191. Sukumar P, Legue V, Vayssieres A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environ 36:909–919PubMedCrossRefGoogle Scholar
  192. Sun X, Ding Q, Hyde KD, Guo LD (2012) Community structure and preference of endophytic fungi of three woody plants in a mixed forest. Fungal Ecol 5:624–632CrossRefGoogle Scholar
  193. Sylvia DM, Williams SE (1992) Vesicular-arbuscular mycorrhizae and environmenlal stress. In: Beihlenfalvay GJ, Linderman RG (eds) Mycorrhizae in susíainable agriculture. American Society of Agronomy, Special Publication 54, American Society of Agronomy, Madison, pp 101–124Google Scholar
  194. Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from maize (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 4:2–9CrossRefGoogle Scholar
  195. Szilagyi-Zecchin VJ et al. (2016) LIVRO microbial inoculants in sustainable agricultural productivity, vol 1. Springer, New Delhi, pp 1–16Google Scholar
  196. Tarafdar JC, Gharu A (2006) Mobilization of organic and poorly soluble phosphates by Chaetomium globosum. Appl Soil Ecol 32:273–283Google Scholar
  197. Tinker P, Nye P (2000) Solute movement in the rhizosphere. Oxford University Press, New YorkGoogle Scholar
  198. Toljander JF, Santos-González JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol 65:323–338PubMedCrossRefGoogle Scholar
  199. Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286PubMedCrossRefGoogle Scholar
  200. Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126CrossRefGoogle Scholar
  201. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209PubMedPubMedCentralCrossRefGoogle Scholar
  202. Valois D, Fayad K, Barasubiye T et al (1996) Glucanolytic Actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635PubMedPubMedCentralGoogle Scholar
  203. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  204. Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272CrossRefGoogle Scholar
  205. Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286CrossRefGoogle Scholar
  206. Vieira JAC (2015) Bactérias endofíticas de milho e seu potencial como promotoras de crescimento vegetal e agentes de controle biológico. Dissertação de mestrado -Universidade Federal de Minas GeraisGoogle Scholar
  207. Villegas J, Fortin JA (2002) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3-as nitrogen source. Can J Bot 80:571–576CrossRefGoogle Scholar
  208. Viruel E, Erazzú LE, Martínez-Calsina L, Merrero AF, Lucca ME, Siñeriz F (2014) Inoculation of maize with phosphate solubilizing bacteria: effect on plant growth and yield. J Soil Sci Plant Nutr 14:819–831Google Scholar
  209. Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206PubMedCrossRefGoogle Scholar
  210. Wang H, Zheng J, Ren X, Yu T, Varma A, Lou B, Zheng X (2015) Effects of Piriformospora indica on the growth, fruit quality and interaction with Tomato yellow leaf curl virus in tomato cultivars susceptible and resistant to TYCLV. Plant Growth Regul 76:303–313Google Scholar
  211. Weinert N, Piceno Y, Ding GC et al (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506PubMedCrossRefGoogle Scholar
  212. Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC, Bakker PA (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412PubMedCrossRefGoogle Scholar
  213. Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151CrossRefGoogle Scholar
  214. Wicklow DT, Poling SM (2009) Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize. Phytopathology 99:109–115PubMedCrossRefGoogle Scholar
  215. Wicklow DT, Roth S, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109:610–618PubMedCrossRefGoogle Scholar
  216. Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166CrossRefGoogle Scholar
  217. Yao Q, Li XL, Feng G, Christie P (2001) Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an arbuscular mycorrhizal fungus. Plant Soil 230: 279–285Google Scholar
  218. Yi Y, Huang W, Ge H (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065CrossRefGoogle Scholar
  219. Zahir ZA, Arshad M, Frankenberger WT (2003) Plant growth promoteng rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168CrossRefGoogle Scholar
  220. Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25CrossRefGoogle Scholar
  221. Zhao L, Deng Z, Yang W, Cao Y, Wang E, Wei G (2010) Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst Appl Microbiol 33:468–477PubMedCrossRefGoogle Scholar
  222. Zoppellari F, Malusà E, Chitarra W, Lovisolo C, Spanna F, Bardi L (2014) Improvement of drought tolerance in maize (Zea maiz L.) by selected rhizospheric microorganisms. Ital J Agrometeorol 18:5–18Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Ubiana de Cássia Silva
    • 1
  • Christiane Abreu de Oliveira
    • 1
    • 2
  • Ubiraci Gomes de Paula Lana
    • 1
    • 2
  • Eliane Aparecida Gomes
    • 1
    • 2
  • Vera Lúcia dos Santos
    • 1
  1. 1.Laboratory of Applied Microbiology, Institute of Biological ScienceFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.National Research Center Mayze and SorghumBrazilian Agricultural Research CompanyBelo HorizonteBrazil

Personalised recommendations