Skip to main content

Nitrogenation Strategy for the Synthesis of Organic Azides

  • Chapter
  • First Online:
Nitrogenation Strategy for the Synthesis of N-containing Compounds

Abstract

Organic azides are among the most important structural classes of chemical substances, which are applied to organic synthesis, chemical biology, and materials science. Thus, there is continuing interest in the development of novel methods for the incorporation of a N3 group into organic molecules. Recently, direct C–H and C–C bond azidation have emerged as a straightforward and atom-economic strategy for C–N3 bond formation. This chapter highlights recent advances in this fast growing research area and also includes important pioneering studies in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinho e Melo TMVD (2010) Synthesis of azides. In: Bräse S, Banert K (eds) Organic azides: syntheses and applications. Wiley-VCH, pp 53–94

    Google Scholar 

  2. Bräse S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed 44(33):5188–5240

    Article  Google Scholar 

  3. Bräse S, Banert K (2010) Organic azides. Wiley-VCH, Weinheim

    Google Scholar 

  4. Jung N, Bräse S (2012) Vinyl and alkynyl azides: well-known intermediates in the focus of modern synthetic methods. Angew Chem Int Ed 51(49):12169–12171

    Article  CAS  Google Scholar 

  5. Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click chemistry for drug development and diverse chemical‐biology applications. Chem Rev 113(7):4905–4979

    Article  CAS  Google Scholar 

  6. Huryn DM, Okabe M (1992) AIDS-driven nucleoside chemistry. Chem Rev 92(8):1745–1768

    Article  CAS  Google Scholar 

  7. Minozzi M, Nanni D, Spagnolo P (2009) From azides to nitrogen-centered radicals: applications of azide radical chemistry to organic synthesis. Chem Eur J 15(32):7830–7840

    Article  CAS  Google Scholar 

  8. Lapointe G, Kapat A, Weidner K, Renaud P (2012) Radical azidation reactions and their application in the synthesis of alkaloids. Pure Appl Chem 84(7):1633–1641

    Article  CAS  Google Scholar 

  9. Chiba S (2012) Application of organic azides for the synthesis of nitrogen-containing molecules. Synlett 23:21–44

    Article  CAS  Google Scholar 

  10. Scriven EFV, Turnbull K (1988) Azides: their preparation and synthetic uses. Chem Rev 88(2):297–368

    Article  CAS  Google Scholar 

  11. Driver TG (2010) Recent advances in transition metal-catalyzed N-atom transfer reactions of azides. Org Biomol Chem 8(17):3831–3846

    Article  CAS  Google Scholar 

  12. Kumar R, Wiebe LI, Knaus EE (1993) Synthesis and antiviral activity of novel 5-(1-azido-2-haloethyl) and 5-(1-azido-, amino-, or methoxyethyl) analogs of 2′-deoxyuridine. J Med Chem 36(17):2470–2474

    Article  CAS  Google Scholar 

  13. Chen L, Zhang Y, Ding G, Ba M, Guo Y, Zou Z (2013) Two new derivatives of 2, 5-dihydroxyphenylacetic acid from the kernel of entada phaseoloides. Molecules 18(2):1477–1482

    Article  CAS  Google Scholar 

  14. Chemler SR, Bovino MT (2013) Catalytic aminohalogenation of alkenes and alkynes. ACS Catal 3(6):1076–1091

    Article  CAS  Google Scholar 

  15. McDonald RI, Liu G, Stahl SS (2011) Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem Rev 111(4):2981–3019

    Article  CAS  Google Scholar 

  16. Jensen KH, Sigman MS (2008) Mechanistic approaches to palladium-catalyzed alkene difunctionalization reactions. Org Biomol Chem 6(22):4083–4088

    Article  CAS  Google Scholar 

  17. Besset T, Poisson T, Pannecoucke X (2015) Direct vicinal difunctionalization of alkynes: an efficient approach towards the synthesis of highly functionalized fluorinated alkenes. Eur J Org Chem 13:2765–2789

    Article  Google Scholar 

  18. Romero RM, Wöste TH, Muñiz K (2014) Vicinal difunctionalization of alkenes with iodine(III) reagents and catalysts. Chem Asian J 9(4):972–983

    Article  CAS  Google Scholar 

  19. Denmark SE, Kuester WE, Burk MT (2012) Catalytic, asymmetric halofunctionalization of alkenes—a critical perspective. Angew Chem Int Ed 51(44):10938–10953

    Article  CAS  Google Scholar 

  20. Li G, Kotti SRSS, Timmons C (2007) Recent development of regio- and stereoselective aminohalogenation reaction of alkenes. Eur J Org Chem 17:2745–2758

    Article  Google Scholar 

  21. Jong SD, Nosal DG, Wardrop DJ (2012) Methods for direct alkene diamination, new & old. Tetrahedron 68(22):4067–4105

    Article  Google Scholar 

  22. Kapat A, König A, Montermini F, Renaud P (2011) A radical procedure for the anti-markovnikov hydroazidation of alkenes. J Am Chem Soc 133(35):13890–13893

    Article  CAS  Google Scholar 

  23. Leggans EK, Barker TJ, Duncan KK, Boger DL (2012) Iron(III)/NaBH4-mediated additions to unactivated alkenes: synthesis of novel 20′-vinblastine analogues. Org Lett 14(6):1428–1431

    Article  CAS  Google Scholar 

  24. Guerin DJ, Horstmann TE, Miller SJ (1999) Amine-catalyzed addition of azide ion to α, β-unsaturated carbonyl compounds. Org Lett 1(7):1107–1109

    Article  CAS  Google Scholar 

  25. Waser J, Nambu H, Carreira EM (2005) Cobalt-catalyzed hydroazidation of olefins: convenient access to alkyl azides. J Am Chem Soc 127(23):8294–8295

    Article  CAS  Google Scholar 

  26. Shyam PK, Jang HY (2014) Metal–organocatalytic tandem azide addition/oxyamination of aldehydes for the enantioselective synthesis of β-amino α-hydroxy esters. Eur J Org Chem 9:1817–1822

    Article  Google Scholar 

  27. Matcha K, Narayan R, Antonchick AP (2013) Metal-free radical azidoarylation of alkenes: rapid access to oxindoles by cascade C–N and C–C bond-forming reactions. Angew Chem Int Ed 52(31):7985–7989

    Article  CAS  Google Scholar 

  28. Nocquet-Thibault S, Rayar A, Retailleau P, Cariou K, Dodd RH (2015) Iodine(III)-mediated diazidation and azido-oxyamination of enamides. Chem Eur J 21(40):14205–14210

    Article  CAS  Google Scholar 

  29. Yuan YA, Lu DF, Chen YR, Xu H (2016) Iron-catalyzed direct diazidation for a broad range of olefins. Angew Chem Int Ed 55(2):534–538

    Article  CAS  Google Scholar 

  30. Lu MZ, Wang CQ, Loh TP (2015) Copper-catalyzed vicinal oxyazidation and diazidation of styrenes under mild conditions: access to alkyl azides. Org Lett 17(24):6110–6113

    Article  CAS  Google Scholar 

  31. Valiulin RA, Mamidyala S, Finn FG (2015) Taming chlorine azide: access to 1,2-azidochlorides from alkenes. J Org Chem 80(5):2740–2755

    Article  CAS  Google Scholar 

  32. Xu L, Mou XQ, Chen ZM, Wang SH (2014) Copper-catalyzed intermolecular azidocyanation of aryl alkenes. Chem Commun 50:10676–10679

    Article  CAS  Google Scholar 

  33. Prasad PK, Reddi RN, Sudalai A (2015) Oxidant controlled regio- and stereodivergent azidohydroxylation of alkenes via I2 catalysis. Chem Commun 51:10276–10279

    Article  CAS  Google Scholar 

  34. Sun X, Li X, Song S, Zhu Y, Liang YF, Jiao N (2015) Mn-catalyzed highly efficient aerobic oxidative hydroxyazidation of olefins: A direct approach to β-azido alcohols. J Am Chem Soc 137(18):6059–6066

    Article  CAS  Google Scholar 

  35. Liu Z, Liu J, Zhang L, Liao P, Song J, Bi X (2014) Silver(I)-catalyzed hydroazidation of ethynyl carbinols: synthesis of 2-azidoallyl alcohols. Angew Chem Int Ed 53(21):5305–5309

    Article  CAS  Google Scholar 

  36. Liu Z, Liao P, Bi X (2014) General silver-catalyzed hydroazidation of terminal alkynes by combining TMS-N3 and H2O: synthesis of vinyl azides. Org Lett 16(14):3668–3671

    Article  CAS  Google Scholar 

  37. Song W, Kozhushkov SI, Ackermann L (2013) Site-selective catalytic c(sp2)-H bond azidations. Angew Chem Int Ed 52(26):6576–6578

    Article  CAS  Google Scholar 

  38. Vita MV, Waser J (2015) Cyclic hypervalent iodine reagents and iron catalysts: the winning team for late-stage C–H azidation. Angew Chem Int Ed 54(18):5290–5292

    Article  CAS  Google Scholar 

  39. Huang X, Groves JT (2016) Taming azide radicals for catalytic C–H azidation. ACS Catal 6(2):751–759

    Article  CAS  Google Scholar 

  40. Grieβ P (1864) Philos Trans R Soc Lond 13:377

    Google Scholar 

  41. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36(4):255–263

    Article  CAS  Google Scholar 

  42. Kita Y, Tohma H, Inagaki M, Hatanaka K, Yakura T (1991) A novel oxidative azidation of aromatic compounds with hypervalent iodine reagent, phenyliodine(III) bis(trifluoroacetate) (PIFA) and trimethylsilyl azide. Tetrahedron Lett 32(34):4321–4324

    Article  CAS  Google Scholar 

  43. Kita Y, Tohma H, Hatanaka K, Takada T, Fujita S, Mitoh S, Sakurai H, Oka S (1994) Hypervalent iodine-induced nucleophilic substitution of para-substituted phenol ethers. generation of cation radicals as reactive intermediates. J Am Chem Soc 116(9):3684–3691

    Article  CAS  Google Scholar 

  44. Telvekar VN, Sasane KA (2012) Simple and efficient method for the preparation of aryl azides using sonication. Synth Commun 42(7):1085–1089

    Article  CAS  Google Scholar 

  45. Tang C, Jiao N (2012) Copper-catalyzed C–H azidation of anilines under mild conditions. J Am Chem Soc 134(46):18924–18927

    Article  CAS  Google Scholar 

  46. Fan Y, Wan W, Ma G, Gao W, Jiang H, Zhu S, Hao J (2014) Room-temperature Cu(II)-catalyzed aromatic C–H azidation for the synthesis of ortho-azido anilines with excellent regioselectivity. Chem Commun 50:5733–5736

    Article  CAS  Google Scholar 

  47. Xie F, Qi Z, Li X (2013) Rhodium(III)-catalyzed azidation and nitration of arenes by C–H activation. Angew Chem Int Ed 52(45):11862–11866

    Article  CAS  Google Scholar 

  48. Yao B, Liu Y, Zhao L, Wang DX, Wang MX (2014) Designing a Cu(II)–ArCu(II)–ArCu(III)–Cu(I) catalytic cycle: Cu(II)-catalyzed oxidative arene C–H bond azidation with air as an oxidant under ambient conditions. J Org Chem 79(22):11139–11145

    Article  CAS  Google Scholar 

  49. Lubriks D, Sokolovs I, Suna E (2012) Indirect C–H azidation of heterocycles via copper-catalyzed regioselective fragmentation of unsymmetrical λ3-iodanes. J Am Chem Soc 134(37):15436–15442

    Article  CAS  Google Scholar 

  50. Pragati PK, Kalshetti RG, Reddi RN, Kamble SP, Sudalai A (2016) I2-mediated regioselective C-3 azidation of indoles. Org Biomol Chem 14:3027–3030

    Article  Google Scholar 

  51. Li P, Zhao J, Xia C, Li F (2015) The development of carbene-stabilized N–O radical coupling strategy in metal-free regioselective C–H azidation of quinoline N-oxides. Org Chem Front 2:1313–1317

    Article  CAS  Google Scholar 

  52. McMillen DF, Golden DM (1982) Hydrocarbon bond dissociation energies. Annu Rev Phys Chem 33:493–532

    Article  CAS  Google Scholar 

  53. Bordwell FG (1988) Equilibrium acidities in dimethyl sulfoxide solution. Acc Chem Res 21(12):456–463

    Article  CAS  Google Scholar 

  54. Magnus P, Lacour J (1992) New trialkylsilyl enol ether chemistry. Direct.beta.-azido functionalization of triisopropylsilyl enol ethers. J Am Chem Soc 114(2):767–769

    Article  CAS  Google Scholar 

  55. Magnus P, Lacour J, Weber W (1993) Direct N-alkyl azidonation of N,N-dialkylarylamines with the iodosylbenzene/trimethylsilyl azide reagent combination. J Am Chem Soc 115(20):9347–9348

    Article  CAS  Google Scholar 

  56. Magnus P, Hulme C, Weber W (1994) alpha.-Azidonation of amides, carbamates, and ureas with the iodosylbenzene/trimethylsilyl azide reagent combination: N-acyliminium ion precursors. J Am Chem Soc 116(10):4501–4502

    Article  CAS  Google Scholar 

  57. Magnus P, Lacour J, Evans PA, Roe MB, Hulme C (1996) Hypervalent iodine chemistry: new oxidation reactions using the iodosylbenzene–trimethylsilyl azide reagent combination. direct α-and β-azido functionalization of triisopropylsilyl enol ethers. J Am Chem Soc 118(14):3406–3418

    Article  CAS  Google Scholar 

  58. Kita Y, Tohma H, Takada T, Mitoh S, Fujita S, Gyoten M (1994) A novel and direct alkyl azidation of p-alkylanisoles using phenyl iodine(III) bis(trifluoroacetate) (PIFA) and trimethylsilyl azide. Synlett 6:427–428

    Article  Google Scholar 

  59. Viuf C, Bols M (2001) Radical azidonation of benzylic positions with iodonium azide. Angew Chem Int Ed 40(3):623–625

    Article  CAS  Google Scholar 

  60. Pedersen CM, Marinescu LG, Bols M (2005) Radical substitution with azide: TMSN3–PhI(OAc)2 as a substitute of IN3. Org Biomol Chem 3:816–822

    Article  CAS  Google Scholar 

  61. Zhdankin VV, Krasutsky AP, Kuehl CJ, Simonsen AJ, Woodward JK, Mismash B, Bolz JT (1996) Preparation, X-ray crystal structure, and chemistry of stable azidoiodinanes derivatives of benziodoxole. J Am Chem Soc 118(22):5192–5197

    Article  CAS  Google Scholar 

  62. Sharma A, Hartwig JF (2015) Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517:600–604

    Article  CAS  Google Scholar 

  63. Huang X, Bergsten TM, Groves JT (2015) Manganese-catalyzed late-stage aliphatic C–H azidation. J Am Chem Soc 137(16):5300–5303

    Article  CAS  Google Scholar 

  64. Wang Y, Li GX, Yang G, He G, Chen G (2016) A visible-light-promoted radical reaction system for azidation and halogenation of tertiary aliphatic C–H bonds. Chem Sci 7:2679–2683

    Article  CAS  Google Scholar 

  65. Rabet PT, Fumagalli G, Boyd S, Greaney MF (2016) Benzylic C–H azidation using the ahdankin reagent and a copper photoredox catalyst. Org Lett 18(7):1646–1649

    Article  CAS  Google Scholar 

  66. Zhang X, Yang H, Tang P (2015) Transition-metal-free oxidative aliphatic C–H azidation. Org Lett 17(23):5828–5831

    Article  CAS  Google Scholar 

  67. Harschneck T, Hummel S, Kirsch SF, Klahn P (2012) Practical azidation of 1,3-dicarbonyls. Chem Eur J 18(4):1187–1193

    Article  CAS  Google Scholar 

  68. Galligan MJ, Akula R, Ibrahim H (2014) Unified strategy for iodine(III)-mediated halogenation and azidation of 1,3-dicarbonyl compounds. Org Lett 16(2):600–603

    Article  CAS  Google Scholar 

  69. Vita MV, Waser J (2013) Azidation of β-keto esters and silyl enol ethers with a benziodoxole reagent. Org Lett 15(13):3246–3249

    Article  CAS  Google Scholar 

  70. Deng QH, Bleith T, Wadepohl H, Gade LH (2013) Enantioselective iron-catalyzed azidation of β-keto esters and oxindoles. J Am Chem Soc 135(14):5356–5359

    Article  CAS  Google Scholar 

  71. Lee JG, Kwak KH (1992) Oxidation of aldehydes to acyl azides by chromic anhydride-azidotrimethylsilane. Tetrahedron Lett 33(22):3165–3166

    Article  CAS  Google Scholar 

  72. Elmorsy SS (1995) Oxidation of aldehydes to acyl azides using triazidochlorosilane (TACS)-active manganese dioxide reagent. Tetrahedron Lett 36(8):1341–1342

    Article  CAS  Google Scholar 

  73. Chen DJ, Chen ZC (2000) Hypervalent iodine in synthesis. Part 54: one-step conversion of aryl aldehydes to aroyl azides using a combined reagent of (diacetoxyiodo)benzene with sodium azide. Tetrahedron Lett 41(38):7361–7363

    Article  CAS  Google Scholar 

  74. Bose DS, Reddy AVN (2003) Iodine(V) reagents in organic synthesis. Dess–Martin periodinane mediated efficient one-pot oxidation of aldehydes to acyl azides. Tetrahedron Lett 44(17):3543–3545

    Article  CAS  Google Scholar 

  75. Arote ND, Akamanchi KG (2007) Direct conversion of aldehydes to acyl azides using tert-butyl hypochlorite. Tetrahedron Lett 48(32):5661–5664

    Article  CAS  Google Scholar 

  76. Marinescu L, Thinggaard J, Thomsen IB, Bols M (2003) Radical azidonation of aldehydes. J Org Chem 68(24):9453–9455

    Article  CAS  Google Scholar 

  77. Sarkar SD, Studer A (2010) Oxidative amidation and azidation of aldehydes by NHC catalysis. Org Lett 12(9):1992–1995

    Article  Google Scholar 

  78. Shinomoto Y, Yoshimura A, Shimizu H, Yamazaki M, Zhdankin VV, Saito A (2015) Tetra-n-butylammonium iodide catalyzed C–H azidation of aldehydes with thermally stable azidobenziodoxolon. Org Lett 17(21):5212–5215

    Article  CAS  Google Scholar 

  79. Emmett MR, Grover HK, Kerr MA (2012) Tandem ring-opening decarboxylation of cyclopropane hemimalonates with sodium azide: a short route to γ-aminobutyric acid esters. J Org Chem 77(15):6634–6637

    Article  CAS  Google Scholar 

  80. Haveli SD, Roy S, Vibha G, Parmar KC, Chandrasekaran S (2013) Ring opening of activated cyclopropanes with NIS/NaN3: synthesis of C-1 linked pseudodisaccharides. Tetrahedron 69(52):11138–11143

    Article  CAS  Google Scholar 

  81. Kishore G, Gautam V, Chandrasekaran S (2014) Novel synthesis of carbohydrate fused α-amino γ-lactams and glycopeptides by NIS mediated ring opening of donor–acceptor substituted cyclopropanes. Carbohyd Res 390:1–8

    Article  CAS  Google Scholar 

  82. Ivanov KL, Villemson EV, Budynina EM, Ivanova OA, Trushkov IV, Melnikov MY (2015) Ring opening of donor-acceptor cyclopropanes with the azide ion: a tool for construction of N-heterocycles. Chem Eur J 21(13):4975–4987

    Article  CAS  Google Scholar 

  83. Gibson DH, DePuy CH (1974) Cyclopropanol chemistry. Chem Rev 74(6):605–623

    Article  CAS  Google Scholar 

  84. Kulinkovich OG (2003) The chemistry of cyclopropanols. Chem Rev 103(7):2597–2632

    Article  CAS  Google Scholar 

  85. Jiao J, Nguyen LX, Patterson DR, Flowers RA II (2007) An efficient and general approach to β-functionalized ketones. Org Lett 9(7):1323–1326

    Article  CAS  Google Scholar 

  86. Ren R, Zhao H, Huan L, Zhu C (2015) Manganese-catalyzed oxidative azidation of cyclobutanols: regiospecific synthesis of alkyl azides by C–C bond cleavage. Angew Chem Int Ed 127(43):12883–12887

    Article  Google Scholar 

  87. Masterson DS, Porter NA (2002) Diastereoselective free radical halogenation, azidation, and rearrangement of β-silyl barton esters. Org Lett 4(24):4253–4256

    Article  CAS  Google Scholar 

  88. Nyfeler E, Renaud P (2008) Decarboxylative radical azidation using MPDOC and MMDOC esters. Org Lett 10(5):985–988

    Article  CAS  Google Scholar 

  89. Klahn P, Erhardt H, Kotthaus A, Kirsch SF (2014) The synthesis of α-azidoesters and geminal triazides. Angew Chem Int Ed 53(30):7913–7917

    Article  CAS  Google Scholar 

  90. Liu C, Wang X, Li Z, Cui L, Li C (2015) Silver-catalyzed decarboxylative radical azidation of aliphatic carboxylic acids in aqueous solution. J Am Chem Soc 137(31):9820–9823

    Article  CAS  Google Scholar 

  91. Zhu Y, Li X, Wang X, Huang X, Shen T, Zhang Y, Sun X, Zou M, Song S, Jiao N (2015) Silver-catalyzed decarboxylative azidation of aliphatic carboxylic acids. Org Lett 17(19):4702–4705

    Article  CAS  Google Scholar 

  92. Feng P, Sun X, Su Y, Li X, Zhang LH, Shi X, Jiao N (2014) Ceric ammonium nitrate (CAN) catalyzed modification of ketones via two C–C bond cleavages with the retention of the oxo-group. Org Lett 16(12):3388–3391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, B., Jiao, N. (2017). Nitrogenation Strategy for the Synthesis of Organic Azides. In: Jiao, N. (eds) Nitrogenation Strategy for the Synthesis of N-containing Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-10-2813-7_6

Download citation

Publish with us

Policies and ethics