Advertisement

Research on Frequency-Converter Control Strategy Based on VSM Technology

  • Dong Weijie
  • Meng Xiaoli
  • Liu Keyan
  • Song Xiaohui
  • Li Yajie
  • Ye Xueshun
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 643)

Abstract

Frequency converter occupies a large proportion in production and daily life, in order to enable it to effectively take part in the process of system frequency regulation, a control strategy based on the virtual synchronous motor technology (VSM) is proposed in this paper. In the inverter part, VSM control strategy is used, using the mechanical inertia and electrical characteristics of the synchronous motor, the power control and frequency control are researched and designed respectively. The frequency converter are simulated under environment of Simulink/Matlab. Simulation results show that the proposed control strategy can make the frequency converter follow the characteristics of VSM, can change the inverter’s output voltage and frequency with the change of motor load.

Keywords

Voltage control Frequency converter Power frequency control Frequency adjustment Virtual synchronous motor (VSM) 

References

  1. 1.
    Meng, J., Shi, X., et al.: A virtual synchronous generator control strategy for distributed generation. In: 2014 China International Conference on Electricity Distribution (CICED), China, Shenzhen, pp. 495–498. IEEE (2014)Google Scholar
  2. 2.
    Zhong, Q.-C., Nguyen, P.-L., Ma, Z., Sheng, W.: Self-synchronized synchronverters: Inverters without a dedicated synchronization unit. IEEE Trans. Power Electron. 29(2), 617–630 (2014)CrossRefGoogle Scholar
  3. 3.
    Zhong, Q.C., Zeng, Y.: Universal droop control of inverters with different types of output impedance. IEEE Access 4, 702–712 (2016)CrossRefGoogle Scholar
  4. 4.
    Alipoor, J., Miura, Y., Ise, T.: Power moment of system stabilization using virtual synchronous generator with alternating inertia. IEEE J. Emerg. Sel. Top. Power. Electron. 3(2), 451–458 (2015)CrossRefGoogle Scholar
  5. 5.
    Lu, L.-Y., Chu, C.-C.: Consensus-based secondary frequency and voltage droop control of virtual synchronous generators for isolated AC Micro-Grids. IEEE J. Emerg. Sel. Top. Circ. Syst. 5(3), 443–455 (2015)CrossRefGoogle Scholar
  6. 6.
    Xiong, L., Zhuo, F., Wang, F., Liu, X., Chen, Y., Zhu, M., Yi, H.: Static synchronous generator model: a new perspective to investigate dynamic characteristics and stability issues of grid-tied PWM inverter. IEEE Trans. Power Electron. 31(9), 6264–6280 (2016)CrossRefGoogle Scholar
  7. 7.
    Liu, J., Miura, Y., Ise, T.: Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans. Power Electron. 31(5), 3600–3611 (2016)CrossRefGoogle Scholar
  8. 8.
    Kwon, Y.C., Kim, S., Sul, S.K.: Voltage feedback current control scheme for improved transient performance of permanent magnet synchronous machine drives. IEEE Trans. Ind. Electron. 59(9), 3373–3382 (2012)CrossRefGoogle Scholar
  9. 9.
    Guan, M., Pan, W., Zhang, J., Hao, Q., Cheng, J., Zheng, X.: Synchronous generator emulation control strategy for voltage source converter (VSC) stations. IEEE Trans. Power Syst. 30(6), 3093–3101 (2015)CrossRefGoogle Scholar
  10. 10.
    Ashabani, M., Mohamed, Y.A.-R.I.: Novel comprehensive control framework for incorporating VSCs to smart power grids using bidirectional synchronous-VSC. IEEE Trans. Power Syst. 29(2), 943–957 (2014)CrossRefGoogle Scholar
  11. 11.
    Ashabani, M., Mohamed, Y.A.-R.I.: General interface for power management of micro-grids using nonlinear cooperative droop control. IEEE Trans. Power Syst. 28(3), 2929–2941 (2013)CrossRefGoogle Scholar
  12. 12.
    Vandoorn, T.L., Meersman, B., De Kooning, J.D.M., Vandevelde, L.: Directly-coupled synchronous generators with converter behavior in islanded microgrids. IEEE Trans. Power Syst. 27(3), 1395–1406 (2012)CrossRefGoogle Scholar
  13. 13.
    He, J., Li, Y.W., Bosnjak, D., Harris, B.: Investigation and active damping of multiple resonances in a parallel-inverter-based microgrid. IEEE Trans. Power Electron. 28(1), 234–246 (2013)CrossRefGoogle Scholar
  14. 14.
    Van, T.V., Visscher, K., Diaz, J., et al.: Virtual synchronous generator: an element of future grids. In: IEEE Innovative Smart Grid Technologies Conference Europe, Gothenburg, Sweden, pp. 1–7. IEEE (2010)Google Scholar
  15. 15.
    D’Arco, S., Suul, J.A.: Equivalence of virtual synchronous machines and frequency-droops for converter-based MicroGrids. IEEE Trans. Smart Grid 5(1), 394–395 (2014)CrossRefGoogle Scholar
  16. 16.
    Torres L, M.A., Lopes, L.A.C., Morán T, L.A., Espinoza C, J.R.: Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control. IEEE Trans. Energy Convers. 29(4), 833–840 (2014)CrossRefGoogle Scholar
  17. 17.
    Zhipeng, L., Wanxing, S., Qingchang, Z., et al.: Virtual synchronous generator and its applications in micro-grid. Proc. CSEE 34(16), 2951–2963 (2014). (in Chinese)Google Scholar
  18. 18.
    Shintai, T., Miura, Y., Ise, T.: Oscillation damping of a distributed generator using a virtual synchronous generator. IEEE Trans. Power Delivery 29(2), 668–676 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Dong Weijie
    • 1
  • Meng Xiaoli
    • 1
  • Liu Keyan
    • 1
  • Song Xiaohui
    • 1
  • Li Yajie
    • 1
  • Ye Xueshun
    • 1
  1. 1.China Electric Power Research InstituteBeijingChina

Personalised recommendations