Advertisement

Microbial Consortial Products for Sustainable Agriculture: Commercialization and Regulatory Issues in India

  • Jegan Sekar
  • Rengalakshmi Raj
  • V. R. PrabavathyEmail author
Chapter

Abstract

Rhizosphere microorganisms directly and indirectly influence the composition and productivity of natural plant communities. Hence, belowground microbial species richness has been proposed as a predictor of aboveground plant diversity and productivity. Though research-based evidences clearly show the advantages of microbial consortia-based products due to their multifunctionality, limited attention is being given to develop quality standards for registration. This chapter focuses on the uses, commercialization, and regulatory issues of various bacterial consortia in sustainable agriculture.

Keywords

Consortia Sustainable agriculture Biofertilizers Biopesticides Rhizosphere 

References

  1. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58(4):921–929CrossRefPubMedGoogle Scholar
  2. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Uni Sci 26:1–20CrossRefGoogle Scholar
  3. Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589CrossRefPubMedGoogle Scholar
  4. Akhtar MS, Siddiqui ZA (2008) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Protect 27(3):410–417CrossRefGoogle Scholar
  5. Akhtar N, Qureshi M, Iqbal A, Ahmad M, Khan K (2012) Influence of Azotobacter and IAA on symbiotic performance of Rhizobium and yield parameters of lentil. J Agric Res 50:361–372Google Scholar
  6. Akila R, Rajendran L, Harish S, Saveetha K, Raguchander T, Samiyappan R (2011) Combined application of botanical formulations and biocontrol agents for the management of Fusarium oxysporum f. sp. cubense (Foc) causing Fusarium wilt in banana. Biol Control 57:175–183CrossRefGoogle Scholar
  7. Aliasgharzad N, Reza M, Neyshabouri Salimi G (2006) Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia 19:324–328Google Scholar
  8. Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Levy J, Debelle F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Denarie J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367CrossRefPubMedGoogle Scholar
  9. Antoun H, Beauchamp C, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67CrossRefGoogle Scholar
  10. Armada E, Azcon R, Lopez-Castillo OM, Calvo-Polanco M, Ruiz-Lozano JM (2015) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74CrossRefPubMedGoogle Scholar
  11. Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816CrossRefPubMedGoogle Scholar
  12. Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, Garcia-Mina JM, Pozo MJ, Lopez-Raez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55CrossRefPubMedGoogle Scholar
  13. Askary M, Mostajeran A, Amooaghaei R, Mostajeran M (2009) Influence of the co-inoculation Azospirillum brasilense and Rhizobium meliloti plus 2,4-D on grain yield and N, P, K content of Triticum aestivum (cv. Baccros and Mahdavi). Am Eurasian J Agric Environ Sci 5:296–307Google Scholar
  14. Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740CrossRefGoogle Scholar
  15. Azcón R, Barea J-M (2010) Mycorrhizosphere interactions for legume improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, New York, pp 237–271CrossRefGoogle Scholar
  16. Bagyaraj D, Kehri H (2012) AM fungi: importance, nursery inoculation and performance after outplanting. In: Bagyaraj D, Tilak K, Kehri H (eds) Microbial diversity and functions. New India Publishing Agency, New Delhi, pp 641–668Google Scholar
  17. Bagyaraj JD (2014) Ecology of arbuscular mycorrhizal fungi. In: Kharwar RN, Upadhyay RS, Dubey NK, Raghuwanshi R (eds) Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 133–146Google Scholar
  18. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413CrossRefGoogle Scholar
  19. Bansal R, Srivastava JP (2012) Antioxidative defense system in pigeon pea roots under water logging stress. Acta Physiol Plant 34:515–522CrossRefGoogle Scholar
  20. Barea J, Pozo M, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778CrossRefPubMedGoogle Scholar
  21. Barea JM, Andrade G, Bianciotto VV, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307PubMedPubMedCentralGoogle Scholar
  22. Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351CrossRefPubMedGoogle Scholar
  23. Barrow JR, Lucero ME, Reyes-Vera I, Havstad KM (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1:69–73CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bashan Y, de-Bashan LE (2005) Bacteria. In: Hillel D (ed) Encyclopedia of soils in the environment, vol 1. Elsevier, Oxford, pp 103–115CrossRefGoogle Scholar
  25. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13CrossRefPubMedGoogle Scholar
  26. Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206Google Scholar
  27. Bisen K, Keswani C, Patel JS, Sarma BK, Singh HB (2016) Trichoderma spp.: Efficient Inducers of Systemic Resistance in Plants. In: Chaudhary DK, Verma A (eds) Microbial-mediated Induced Systemic Resistance in Plants. Springer, Singapore, pp 185–195CrossRefGoogle Scholar
  28. Boby V, Bagyaraj D (2003) Biological control of root-rot of Coleus forskohlii Briq. using microbial inoculants. World J Microbiol Biotechnol 19(2):175–180CrossRefGoogle Scholar
  29. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 27:1–48CrossRefGoogle Scholar
  30. Boyer M, Wisniewski-Dyé F (2009) Cell–cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol Ecol 70:1–19CrossRefPubMedGoogle Scholar
  31. Brimecombe MJ, De Leij FA, Lynch JM (2007) Rhizodeposition and Microbial Populations. In: R Pinton, Z Varanini, P Nannipieri (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press/Taylor & Francis Group, Boca Raton/London/New York, pp 73–109Google Scholar
  32. Buée M, de Boer W, Martin F, van Overbeek LS, Jurkevitch E (2009) The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and some of their structuring factors. Plant Soil 321:189–212CrossRefGoogle Scholar
  33. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefPubMedGoogle Scholar
  34. Cai A, Xu H, Shao X, Zhu P, Zhang W, Xu M, Murphy DV (2016) Carbon and Nitrogen mineralization in relation to soil particle-size fractions after 32 years of chemical and manure application in a continuous maize cropping system. PLoS One 11:e0152521CrossRefPubMedPubMedCentralGoogle Scholar
  35. Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35CrossRefGoogle Scholar
  36. Cavaglieri L, Orlando J, Etcheverry M (2009) Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiol Res 164:391–399CrossRefPubMedGoogle Scholar
  37. Chandra R, Pareek R (2002) Effect of rhizobacteria in urdbean and lentil. Indian J Pulses Res 15(2):152–155Google Scholar
  38. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803CrossRefPubMedGoogle Scholar
  39. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499CrossRefGoogle Scholar
  40. Couillerot O, Combes-Meynet E, Pothier JF, Bellvert F, Challita E, Poirier MA, Rohr R, Comte G, Moenne-Loccoz Y, Prigent-Combaret C (2011) The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Microbiology 157:1694–1705CrossRefPubMedGoogle Scholar
  41. Damiani I, Baldacci-Cresp F, Hopkins J, Andrio E, Balzergue S, Lecomte P, Puppo A, Abad P, Favery B, Herouart D (2012) Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. New Phytol 194:511–522CrossRefPubMedGoogle Scholar
  42. Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez Carvajal MA, Soria Díaz ME, Gil Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721CrossRefGoogle Scholar
  43. Dashadi M, Khosravi H, Moezzi A, Nadian H, Heidari M, Radjabi R (2011) Co-inoculation of Rhizobium and Azotobacter on growth indices of faba bean under water stress in the green house condition. Adv Stud Biol 3:373–385Google Scholar
  44. de Boer M, Bom P, Kindt F, Keurentjes JJ, van der Sluis I, van Loon LC, Bakker PA (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626–632CrossRefPubMedGoogle Scholar
  45. De Deyn G, Raaijmakers C, Van der Putten W (2004) Plant community development is affected by nutrients and soil biota. J Ecol 92:824–834CrossRefGoogle Scholar
  46. de Jensen CE, Percich J, Graham P (2002) Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crop Res 74:107–115CrossRefGoogle Scholar
  47. Deanand B, Patil A, Kulkaarni J, Algawadi A (2002) Effect of plant growth promoting rhizobacteria on growth and yield of pigeon pea (Cajanus cajan L.) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394Google Scholar
  48. DeAngelis KM, Lindow SE, Firestone MK (2008) Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiol Ecol 66:197–207CrossRefPubMedGoogle Scholar
  49. Dennis P, Miller A, Hirsch P (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327CrossRefPubMedGoogle Scholar
  50. Dunne C, Moënne‐Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling D, O’Gara F (1998) Combining proteolytic and phloroglucinol-producing bacteria for improved biocontrol of Pythium-mediated damping-off of sugar beet. Plant Pathol 47:299–307CrossRefGoogle Scholar
  51. Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244CrossRefPubMedGoogle Scholar
  52. Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209CrossRefPubMedPubMedCentralGoogle Scholar
  53. Elkoca E, Turan M, Donmez MF (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. Phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris l. cv.‘elkoca-05’). J Plant Nutr 33:2104–2119CrossRefGoogle Scholar
  54. Estevez J, Dardanelli M, Megias M, Rodríguez-Navarro D (2009) Symbiotic performance of common bean and soybean co-inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis 49:29–36CrossRefGoogle Scholar
  55. Farajzadeh D, Yakhchali B, Aliasgharzad N, Sokhandan-Bashir N, Farajzadeh M (2012) Plant growth promoting characterization of indigenous Azotobacteria isolated from soils in Iran. Curr Microbiol 64:397–403CrossRefPubMedGoogle Scholar
  56. Figueiredo MV, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188CrossRefGoogle Scholar
  57. Fox SL, O’Hara GW, Bräu L (2011) Enhanced nodulation and symbiotic effectiveness of Medicago truncatula when co-inoculated with Pseudomonas fluorescens WSM3457 and Ensifer (Sinorhizobium) medicae WSM419. Plant Soil 348:245–254CrossRefGoogle Scholar
  58. Franzini VI, Azcon R, Mendes FL, Aroca R (2010) Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J Plant Physiol 167:614–619CrossRefPubMedGoogle Scholar
  59. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36CrossRefPubMedGoogle Scholar
  60. Gaind S, Rathi MS, Kaushik BD, Nain L, Verma OP (2007) Survival of bio-inoculants on fungicides-treated seeds of wheat, pea and chickpea and subsequent effect on chickpea yield. J Environ Sci Health B 42:663–668CrossRefPubMedGoogle Scholar
  61. Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467CrossRefPubMedGoogle Scholar
  62. Gao X, Lu X, Wu M, Zhang H, Pan R, Tian J, Li S, Liao H (2012) Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis. PLoS One 7:e33977CrossRefPubMedPubMedCentralGoogle Scholar
  63. German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soils 32:259–264CrossRefGoogle Scholar
  64. Ghosh N (2004) Promoting Biofertilisers in Indian Agriculture. Econ Polit Wkly 39:5617–5625Google Scholar
  65. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2014) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377CrossRefPubMedCentralGoogle Scholar
  66. Gray E, Smith D (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  67. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240CrossRefGoogle Scholar
  68. Gupta A, Saxena A, Gopal M, Tilak K (1998) Effect of plant growth promoting rhizobacteria on competitive ability of introduced Bradyrhizobium sp. (Vigna) for nodulation. Microbiol Res 153:113–117CrossRefGoogle Scholar
  69. Gupta R, Bisaria VS, Sharma S (2015) Effect of agricultural amendments on Cajanus cajan (pigeon pea) and Its rhizospheric microbial communities – a comparison between chemical fertilizers and bioinoculants. PLoS One 10:e0132770CrossRefPubMedPubMedCentralGoogle Scholar
  70. Halverson LJ, Handelsman J (1991) Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber. Appl Environ Microbiol 57:2767–2770PubMedPubMedCentralGoogle Scholar
  71. Hartmann A, Rothballer M, Hense BA, Schroder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131CrossRefPubMedPubMedCentralGoogle Scholar
  72. Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257CrossRefGoogle Scholar
  73. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  74. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Da W (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  75. Jain A, Singh A, Singh BN, Singh S, Upadhyay RS, Sarma BK, Singh HB (2013) Biotic stress management in agricultural crops using microbial consortium. In: Maheshwari KD (ed) Bacteria in agrobiology: disease management. Springer, Berlin/Heidelberg, pp 427–448CrossRefGoogle Scholar
  76. Jain A, Singh A, Singh S, Singh HB (2015) Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. J Basic Microbiol 55(8):961–972CrossRefPubMedGoogle Scholar
  77. Jain A, Singh S, Kumar Sarma B, Bahadur Singh H (2012) Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112(3):537–550CrossRefPubMedGoogle Scholar
  78. Jha Y, Subramanian R (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition. Chilean J Agricult Res 73:213–219CrossRefGoogle Scholar
  79. Jia Y, Gray VM, Straker CJ (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258CrossRefPubMedPubMedCentralGoogle Scholar
  80. Jones DL, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6CrossRefGoogle Scholar
  81. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33CrossRefGoogle Scholar
  82. Kamal R, Gusain YS, Sharma IP, Sharma S, Sharma A (2016) Impact of arbuscular mycorrhizal fungus, Glomus intraradices, Streptomyces and Pseudomonas spp. strain on finger millet (Eleusine coracana L.) cv Korchara under water deficit condition. Afr J Biotechnol 14:3219–3227Google Scholar
  83. Kathiravan R, Jegan S, Ganga V, Prabavathy VR, Tushar L, Sasikala C, Ramana CV (2013) Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.). Int J Syst Evol Microbiol 63:4484–4488CrossRefPubMedGoogle Scholar
  84. Keshri S (2016) Organic food – harvesting a mirage. http://mediaindiaeu/sector/organic-food/Google Scholar
  85. Keswani C, Singh SP, Singh HB (2013) A superstar in biocontrol enterprise: Trichoderma spp. Biotech Today 3:27–30CrossRefGoogle Scholar
  86. Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient application of secondary metabolites of various Trichoderma. Appl Microbiol Biotechnol 98:533–544CrossRefPubMedGoogle Scholar
  87. Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Metting FB (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker Inc, New YorkGoogle Scholar
  88. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44CrossRefGoogle Scholar
  89. Kohler J, Caravaca F (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa Roldan. Soil Biol Biochem 42:429–434CrossRefGoogle Scholar
  90. Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151CrossRefGoogle Scholar
  91. Krishnan R, Menon RR, Tanaka N, Busse HJ, Krishnamurthi S, Rameshkumar N (2016) Arthrobacter pokkalii sp nov, a novel plant associated Actinobacterium with plant beneficial properties, isolated from saline tolerant Pokkali rice, Kerala, India. PLoS One 11:e0150322CrossRefPubMedPubMedCentralGoogle Scholar
  92. Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598CrossRefGoogle Scholar
  93. Larson C (2013) Climate change. Losing arable land, China faces stark choice: adapt or go hungry. Science 339:644–645CrossRefPubMedGoogle Scholar
  94. Lau JA, Lennon JT (2011) Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224CrossRefPubMedGoogle Scholar
  95. Lemanceau P, Alabouvette C (1991) Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Prot 10:279–286CrossRefGoogle Scholar
  96. Lesueur D, Ingleby K, Odee D, Chamberlain J, Wilson J, Tiki Manga T, Sarrailh JM, Pottinger A (2001) Improvement of forage production in Calliandra calothyrsus: methodology for the identification of an effective inoculum containing Rhizobium strains and arbuscular mycorrhizal isolates. J Biotechnol 91:269–282CrossRefPubMedGoogle Scholar
  97. Lesueur D, Sarr A (2008) Effects of single and dual inoculation with selected microsymbionts (rhizobia and arbuscular mycorrhizal fungi) on field growth and nitrogen fixation of Calliandra calothyrsus Meissn. Agrofor Syst 73:37–45CrossRefGoogle Scholar
  98. Liu X, Bimerew M, Ma Y, Muller H, Ovadis M, Eberl L, Berg G, Chernin L (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270:299–305CrossRefPubMedGoogle Scholar
  99. Lucas JA, Ramos Solano B, Montes F, Ojeda J, Megias M, Gutierrez Mañero FJ (2009) Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crop Res 114:404–410CrossRefGoogle Scholar
  100. Lynch JM (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM (ed) The rhizosphere. Wiley, New York, pp 1–10Google Scholar
  101. Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17:25–32CrossRefPubMedPubMedCentralGoogle Scholar
  102. Malusa E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98:6599–6607CrossRefPubMedPubMedCentralGoogle Scholar
  103. Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ouzari I, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res Int 2013:248078CrossRefPubMedPubMedCentralGoogle Scholar
  104. Markets and Markets (2015) Biofertilizers market by type (Nitrogen-fixing, phosphate-solubilizing & potash- mobilizing), microorganisms (Rhizobium, Azotobacter, Azospirillum, Cyanobacteria & phosphate-solubilizing bacteria), application, crop type & by region – Global Forecast to 2020Google Scholar
  105. Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124CrossRefGoogle Scholar
  106. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530CrossRefGoogle Scholar
  107. Mazid M, Khan TA (2014) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agri Food Res 3:10–23Google Scholar
  108. Medeot D, Paulucci N, Albornoz A, Fumero M, Bueno M, Garcia M, Woelke M, Okon Y, Dardanelli M (2010) Plant growth promoting rhizobacteria improving the legume–rhizobia symbiosis. Springer, New YorkCrossRefGoogle Scholar
  109. Mehboob I, Naveed M, Zahir ZA, Sessitsch A (2013) Potential of rhizosphere bacteria for improving Rhizobium-legume symbiosis. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 305–349CrossRefGoogle Scholar
  110. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663CrossRefPubMedGoogle Scholar
  111. Ministry of Agriculture (2009) Biofertilizers and organic fertilizers covered in fertilizer (Control) Order, 1985 (as amended, March 2006 and November 2009). Government of IndiaGoogle Scholar
  112. Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930CrossRefPubMedGoogle Scholar
  113. Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol 6:245–252CrossRefPubMedGoogle Scholar
  114. NAAS (2013) Biopesticides – Quality Assurance. Policy Paper No. 62. New DelhiGoogle Scholar
  115. Nadeem SM, Naveed M, Zahir ZA, Asghar HN (2013) Plant–microbe interactions for sustainable agriculture: Fundamentals and recent advances. In: Arora KN (ed) Plant Microbe Symbiosis: Fundamentals and Advances. Springer India, New Delhi, pp 51–103CrossRefGoogle Scholar
  116. Nautiyal CS, Chauhan PS, DasGupta SM, Seem K, Varma A, Staddon WJ (2010) Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488, Piriformospora indica DSM 11827, and Cicer arietinum L. World J Microbiol Biotechnol 26:1393–1399CrossRefGoogle Scholar
  117. Nunes da Rocha U, Plugge CM, George I, van Elsas JD, van Overbeek LS (2013) The rhizosphere selects for particular groups of Acidobacteria and Verrucomicrobia. PLoS One 8:e82443CrossRefPubMedPubMedCentralGoogle Scholar
  118. Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116Google Scholar
  119. Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636CrossRefPubMedGoogle Scholar
  120. Pandey P, Maheshwari DK (2007) Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan. Can J Microbiol 53(2):213–222CrossRefPubMedGoogle Scholar
  121. Pang Y, Liu X, Ma Y, Chernin L, Berg G, Gao K (2008) Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268CrossRefGoogle Scholar
  122. Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res Int 22:4056–4075CrossRefPubMedGoogle Scholar
  123. Park J, Bolan N, Megharaj M, Naidu R (2010) Isolation of Phosphate-Solubilizing Bacteria and characterization of their Effects on Lead Immobilization. Pedologist 53:67–75Google Scholar
  124. Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44CrossRefGoogle Scholar
  125. Picard C, Bosco M (2008) Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots. Naturwissenschaften 95:1–16CrossRefPubMedGoogle Scholar
  126. Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955CrossRefPubMedPubMedCentralGoogle Scholar
  127. Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium- a potential tool for sustainable soil health. J Biofertil Biopest 3:124Google Scholar
  128. Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90CrossRefPubMedGoogle Scholar
  129. Prasanna R, Bidyarani N, Babu S, Hossain F, Shivay YS, Nain L (2015) Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agricult 1:998507CrossRefGoogle Scholar
  130. Qureshi M, Ahmad M, Naveed M, Iqbal A, Akhtar N, Niazi K (2009) Co-inoculation with Mesorhizobium ciceri and Azotobacter chroococcum for improving growth, nodulation and yield of chickpea (Cicer arietinum L.). Soil and Environment (Pakistan)Google Scholar
  131. Raaijmakers J, Paulitz T, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361CrossRefGoogle Scholar
  132. Rabie GH, Aboul-Nasr MB, Al-Humiany A (2005) Increased salinity tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense. Mycobiology 33:51–60CrossRefPubMedPubMedCentralGoogle Scholar
  133. Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550CrossRefPubMedGoogle Scholar
  134. Raju K, Sekar J, Vaiyapuri Ramalingam P (2016) Salinicola rhizosphaerae sp. nov., isolated from the rhizosphere of the mangrove Avicennia marina L. Int J Syst Evol Microbiol 66:1074–1079CrossRefGoogle Scholar
  135. Ramos-Solano B, Algar E, Garcia-Villaraco A, Garcia-Cristobal J, Lucas Garcia JA, Gutierrez-Manero FJ (2010) Biotic elicitation of isoflavone metabolism with plant growth promoting rhizobacteria in early stages of development in Glycine max var. Osumi J Agric Food Chem 58:1484–1492CrossRefPubMedGoogle Scholar
  136. Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164CrossRefPubMedGoogle Scholar
  137. Reddy CA, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. In: Sima S, Geoffrey MG (eds) Advances in Applied Microbiology, vol 82. Academic, San Diego, pp 53–113Google Scholar
  138. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581CrossRefPubMedGoogle Scholar
  139. Remans R, Ramaekers L, Schelkens S, Hernandez G, Garcia A, Reyes JL, Mendez N, Toscano V, Mulling M, Galvez L (2008) Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37CrossRefGoogle Scholar
  140. Rivas R, Menéndez E, García-Fraile P (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2:183–205CrossRefGoogle Scholar
  141. RNR Market Research (2014) Bio fertilizers Industry (nitrogen fixing, phosphate solubilizing, potash mobilizing) – trends to 2019Google Scholar
  142. Rodelas B, González-López J, Salmeron V, Pozo C, Martinez-Toledo M (1996) Enhancement of nodulation, N2-fixation and growth of faba bean (Vicia faba L.) by combined inoculation with Rhizobium leguminosarum bv. viceae and Azospirillum brasilense. Symbiosis 21:175–186Google Scholar
  143. Rodriguez H, Vessely S, Shah S, Glick BR (2008) Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr Microbiol 57:170–174CrossRefPubMedGoogle Scholar
  144. Roesti D, Gaur R, Johri B, Imfeld G, Sharma S, Kawaljeet K, Aragno M (2006) Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol Biochem 38:1111–1120CrossRefGoogle Scholar
  145. Rudresh D, Shivaprakash M, Prasad R (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl Soil Ecol 28:139–146CrossRefGoogle Scholar
  146. Ruiz-Sanchez M, Armada E, Munoz Y, Garcia de Salamone IE, Aroca R, Ruiz-Lozano JM, Azcon R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037CrossRefPubMedGoogle Scholar
  147. Ruiz-Sanchez M, Aroca R, Munoz Y, Polon R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869CrossRefPubMedGoogle Scholar
  148. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9CrossRefPubMedGoogle Scholar
  149. Sahoo RK, Ansari MW, Dangar TK, Mohanty S, Tuteja N (2013) Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement., ProtoplasmaGoogle Scholar
  150. Saldajeno M, Chandanie W, Kubota M, Hyakumachi M (2008) Effects of interactions of arbuscular mycorrhizal fungi and beneficial saprophytic mycoflora on plant growth and disease protection. In: Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 211–226CrossRefGoogle Scholar
  151. Santoyo G, Orozco-Mosqueda MC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 22:855–872CrossRefGoogle Scholar
  152. Saravanakumar D, Lavanya N, Muthumeena B, Raguchander T, Suresh S, Samiyappan R (2008) Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaffolder pest. J Appl Entomol 132:469–479CrossRefGoogle Scholar
  153. Sashidhar B, Podile AR (2010) Mineral phosphate solubilisation by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 109:1–12PubMedGoogle Scholar
  154. Sayyed RZ, Patel PR (2011) Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas aeruginosa RZS3 vis-a-vis organophosphorus fungicide. Indian J Microbiol 51:266–272CrossRefPubMedPubMedCentralGoogle Scholar
  155. Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant Microbe Interact 28:212–217CrossRefPubMedGoogle Scholar
  156. Schnitzer SA, Klironomos JN, Hillerislambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92:296–303CrossRefPubMedGoogle Scholar
  157. Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918CrossRefPubMedGoogle Scholar
  158. Schwartz A, Ortiz I, Maymon M, Herbold C, Fujishige N, Vijanderan J, Villella W, Hanamoto K, Diener A, Sanders E, DeMason D, Hirsch A (2013) Bacillus simplex—a little known PGPB with anti-fungal activity—alters pea legume root architecture and nodule morphology when coinoculated with Rhizobium leguminosarum bv. viciae. Agronomy 3:595Google Scholar
  159. Sekar J, Prabavathy VR (2014) Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity. FEMS Microbiol Ecol 89:32–46CrossRefPubMedGoogle Scholar
  160. Shanmugam V, Kanoujia N, Singh M, Singh S, Prasad R (2011) Biocontrol of vascular wilt and corm rot of gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Prot 30:807–813CrossRefGoogle Scholar
  161. Sharma N, Yadav K, Aggarwal A (2016) Growth response of two Phaseolus mungo L. cultivars induced by arbuscular mycorrhizal fungi and Trichoderma viride. Intl J Agron 2016:1–6CrossRefGoogle Scholar
  162. Shirley FN, Zhongqi H, Jim CS (2000) Strategies for aerobic degradation of nitroaromatic compounds by bacteria. In: Spain JC, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 7–62Google Scholar
  163. Shrivastava P, Kumar R (2015) Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131CrossRefPubMedGoogle Scholar
  164. Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40CrossRefPubMedGoogle Scholar
  165. Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353CrossRefGoogle Scholar
  166. Singh N, Pandey P, Dubey R, Maheshwari D (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J Microbiol Biotechnol 24:1669–1679CrossRefGoogle Scholar
  167. Singh R, Parameswaran TN, Prakasa Rao EVS, Puttanna K, Kalra A, Srinivas KVNS, Bagyaraj DJ, Divya S (2009) Effect of arbuscular mycorrhizal fungi and Pseudomonas fluorescens on root-rot and wilt, growth and yield of Coleus forskohlii. Biocontrol Sci Technol 19:835–841CrossRefGoogle Scholar
  168. Singh RB (2000) Environmental consequences of agricultural development: a case study from the Green Revolution state of Haryana, India. Agric Ecosyst Environ 82:97–103CrossRefGoogle Scholar
  169. Smith DL, Praslickova D, Ilangumaran G (2015) Inter-organismal signaling and management of the phytomicrobiome. Front Plant Sci 6:722PubMedPubMedCentralGoogle Scholar
  170. Snellinx Z, Taghavi S, Vangronsveld J, van der Lelie D (2003) Microbial consortia that degrade 2, 4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation 14:19–29CrossRefPubMedGoogle Scholar
  171. Srinivas A, Bhalekar DN (2013) Constraints faced by farmers in adoption of biofertilizers. Int J Sci Res 3:2277–8179Google Scholar
  172. Srinivasan M, Holl FB, Petersen DJ (1997) Nodulation of Phaseolus vulgaris by Rhizobium etli is enhanced by the presence of Bacillus. Can J Microbiol 43:1–8CrossRefGoogle Scholar
  173. Srivastava R, Khalid A, Singh US, Sharma AK (2010) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol Control 53:24–31CrossRefGoogle Scholar
  174. Suresh K (2012) Biopesticides: A need for food and environmental safety. J Biofertil Biopestici 3:e107Google Scholar
  175. Tajini F, Trabelsi M, Drevon JJ (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 19:157–163CrossRefPubMedGoogle Scholar
  176. Thijs S, Weyens N, Sillen W, Gkorezis P, Carleer R, Vangronsveld J (2014) Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil. Microb Biotechnol 7:294–306CrossRefPubMedPubMedCentralGoogle Scholar
  177. Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57:67–71CrossRefGoogle Scholar
  178. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284CrossRefPubMedGoogle Scholar
  179. Timmusk S, Wagner EG (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959CrossRefPubMedGoogle Scholar
  180. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171CrossRefPubMedPubMedCentralGoogle Scholar
  181. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557CrossRefPubMedGoogle Scholar
  182. Unno Y, Shinano T (2013) Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. Microbes Environ 28:120–127CrossRefPubMedGoogle Scholar
  183. Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol (Stuttg) 14:605–611CrossRefGoogle Scholar
  184. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356CrossRefPubMedPubMedCentralGoogle Scholar
  185. Valdenegro M, Barea JM, Azcón R (2001) Influence of arbuscular-mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for re-vegetation and biological reactivation in a semi-arid mediterranean area. Plant Growth Regul 34:233–240CrossRefGoogle Scholar
  186. Van der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  187. van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310CrossRefPubMedGoogle Scholar
  188. Verma JP, Yadav J, Tiwari KN, Jaiswal DK (2014) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37CrossRefGoogle Scholar
  189. Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286CrossRefGoogle Scholar
  190. Villaverde JJ, Sevilla-Moran B, Sandin-Espana P, Lopez-Goti C, Alonso-Prados JL (2014) Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag Sci 70:2–5CrossRefPubMedGoogle Scholar
  191. Viswanath G, Jegan S, Baskaran V, Kathiravan R, Prabavathy VR (2015) Diversity and N-acyl-homoserine lactone production by Gammaproteobacteria associated with Avicennia marina rhizosphere of South Indian mangroves. Syst Appl Microbiol 38:340–345CrossRefPubMedGoogle Scholar
  192. Vivas A, Azcón R, Biró B, Barea J, Ruiz-Lozano J (2003a) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49:577–588CrossRefPubMedGoogle Scholar
  193. Vivas A, Voros I, Biro B, Campos E, Barea JM, Azcon R (2003b) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189CrossRefPubMedGoogle Scholar
  194. Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174CrossRefPubMedPubMedCentralGoogle Scholar
  195. Wagg C, Jansa J, Schmid B, van der Heijden MG (2011) Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett 14:1001–1009CrossRefPubMedGoogle Scholar
  196. Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7:e52565CrossRefPubMedPubMedCentralGoogle Scholar
  197. Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21(3):173–181CrossRefPubMedGoogle Scholar
  198. Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC, Bakker PA (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412CrossRefPubMedGoogle Scholar
  199. Xu J (2006) Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713–1731CrossRefPubMedGoogle Scholar
  200. Yang JW, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4CrossRefPubMedGoogle Scholar
  201. Yin D, Wang N, Xia F, Li Q, Wang W (2013) Impact of biocontrol agents Pseudomonas fluorescens 2P24 and CPF10 on the bacterial community in the cucumber rhizosphere. Eur J Soil Biol 59:36–42CrossRefGoogle Scholar
  202. Yokoyama S, Adachi Y, Asakura S, Kohyama E (2013) Characterization of Alcaligenes faecalis strain AD15 indicating biocontrol activity against plant pathogens. J Gen Appl Microbiol 59:89–95CrossRefPubMedGoogle Scholar
  203. Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424CrossRefPubMedGoogle Scholar
  204. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989PubMedPubMedCentralGoogle Scholar
  205. Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744CrossRefPubMedGoogle Scholar
  206. Zhang Z, Pierson LS (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67:4305–4315CrossRefPubMedPubMedCentralGoogle Scholar
  207. Zheng Y, Liu H, Guo J (2010) Effects of biopesticide against root-knot nematodes in bitter melon. China: plant bacteria disease and biocontrol, 365 pGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Jegan Sekar
    • 1
  • Rengalakshmi Raj
    • 1
  • V. R. Prabavathy
    • 1
    Email author
  1. 1.M.S. Swaminathan Research FoundationChennaiIndia

Personalised recommendations