Advertisement

Liquid Biopsy for Early Detection of Pancreatic Cancer

  • Erina TakaiEmail author
  • Shinichi Yachida
Chapter

Abstract

Most pancreatic cancer patients present with advanced metastatic disease, resulting in extremely poor 5-year survival, mainly because there is no reliable modality for early detection of this disease. Therefore, there is a need for less-invasive diagnostic tools for detecting pancreatic cancer at an early stage, when curative surgery may be feasible. “Liquid biopsy” addresses this unmet clinical need based on the concept that simple peripheral blood sampling and detection of circulating tumor DNA (ctDNA) could provide diagnostic information. Recent technological advances have enabled detection of genomic alterations in ctDNA in blood samples from cancer patients. In this chapter, we provide an overview of the current status of blood-based tests for diagnosis of pancreatic cancer, and we also discuss challenges that remain to be addressed in developing practical ctDNA-based liquid biopsy for early diagnosis of pancreatic cancer.

Keywords

Circulating tumor DNA Liquid biopsy Biomarker 

References

  1. 1.
    Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467:1114–7.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil. 1948;142:241–3.PubMedGoogle Scholar
  3. 3.
    Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology. 1989;46:318–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Diaz Jr LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579–86.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467:1109–13.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–65.PubMedGoogle Scholar
  7. 7.
    Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–37.CrossRefPubMedGoogle Scholar
  8. 8.
    Sun K, Jiang P, Chan KC, Wong J, Cheng YK, Liang RH, et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A. 2015;112:E5503–12.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A. 2003;100:8817–22.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Baker M. Digital PCR hits its stride. Nat Methods. 2012;9:541–4.CrossRefGoogle Scholar
  11. 11.
    Takai E, Totoki Y, Nakamura H, Morizane C, Nara S, Hama N, et al. Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer. Sci Rep. 2015;5:18425.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108:9530–5.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4:136ra68.CrossRefPubMedGoogle Scholar
  14. 14.
    Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med. 2010;2:20ra14.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Maire F, Micard S, Hammel P, Voitot H, Lévy P, Cugnenc PH, et al. Differential diagnosis between chronic pancreatitis and pancreatic cancer: value of the detection of KRAS2 mutations in circulating DNA. Br J Cancer. 2002;87:551–4.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Däbritz J, Preston R, Hänfler J, Oettle H. K-ras mutations in the plasma correspond to computed tomographic findings in patients with pancreatic cancer. Pancreas. 2012;41:323–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen H, Tu H, Meng ZQ, Chen Z, Wang P, Liu LM. K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. Eur J Surg Oncol. 2010;36:657–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Kinugasa H, Nouso K, Miyahara K, Morimoto Y, Dohi C, Tsutsumi K, et al. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer. 2015;121:2271–80.CrossRefPubMedGoogle Scholar
  20. 20.
    Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 2015;6:7686.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tjensvoll K, Lapin M, Buhl T, Oltedal S, Steen-Ottosen Berry K, et al. Clinical relevance of circulating KRAS mutated DNA in plasma from patients with advanced pancreatic cancer. Mol Oncol. 2015;10:635–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci Transl Med. 2015;7:283ra53.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zill OA, Greene C, Sebisanovic D, Siew LM, Leng J, Vu M, et al. Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas. Cancer Discov. 2015;5:1040–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shi C, Fukushima N, Abe T, Bian Y, Hua L, Wendelburg BJ, et al. Sensitive and quantitative detection of KRAS2 gene mutations in pancreatic duct juice differentiates patients with pancreatic cancer from chronic pancreatitis, potential for early detection. Cancer Biol Ther. 2008;7:353–60.CrossRefPubMedGoogle Scholar
  26. 26.
    Eshleman JR, Norris AL, Sadakari Y, Debeljak M, Borges M, Harrington C, et al. KRAS and guanine nucleotide-binding protein mutations in pancreatic juice collected from the duodenum of patients at high risk for neoplasia undergoing endoscopic ultrasound. Clin Gastroenterol Hepatol. 2015;13:963–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Matsubayashi H, Canto M, Sato N, Klein A, Abe T, Yamashita K, et al. DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Res. 2006;66:1208–17.CrossRefPubMedGoogle Scholar
  28. 28.
    Yi JM, Guzzetta AA, Bailey VJ, Downing SR, Van Neste L, Chiappinelli KB, et al. Novel methylation biomarker panel for the early detection of pancreatic cancer. Clin Cancer Res. 2013;19:6544–55.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523:177–82.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Division of Cancer GenomicsNational Cancer Center Research InstituteChuo-kuJapan

Personalised recommendations