Stem Cell Based Biotherapy for Radiation Related Injury



Radiation injury occurs after nuclear explosives, radiological or nuclear terrorism, nuclear accidents, and radiation therapy in combination with surgery, and it is more complicated and difficult to heal than single radiation or wound injuries. The stem cell-based therapy holds promise for radiation related injuries treatment. In this review, we summarized some representative biological properties of MSCs pre- and post-irradiation, discussed the feasibility of MSCs to apply to the treatment of radiation injuries on animal models and clinical patients, and elucidated the mechanisms of MSCs-based therapy to radiation injuries.


Radiation Stem cells Skin Radiation related injuries Biotherapy 


  1. 1.
    Weiss JF, Landauer MR. History and development of radiation-protective agents. Int J Radiat Biol. 2009;85(7):539–73 PubMed PMID: 19557599.CrossRefPubMedGoogle Scholar
  2. 2.
    Cheng T, Chen Z, Yan Y, Ran X, Su Y, Ai G. Experimental studies on the treatment and pathological basis of combined radiation and burn injury. Chin Med J. 2002;115(12):1763–6 PubMed PMID: 12622919.PubMedGoogle Scholar
  3. 3.
    Singh VK, Grace MB, Parekh VI, Whitnall MH, Landauer MR. Effects of genistein administration on cytokine induction in whole-body gamma irradiated mice. Int Immunopharmacol. 2009;9(12):1401–10 PubMed PMID: 19716438.CrossRefPubMedGoogle Scholar
  4. 4.
    Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett. 2015;356(1):43–51 PubMed PMID: 24530228.CrossRefPubMedGoogle Scholar
  5. 5.
    Mauch P, Constine L, Greenberger J, Knospe W, Sullivan J, Liesveld JL, et al. Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys. 1995;31(5):1319–39 PubMed PMID: 7713791.CrossRefPubMedGoogle Scholar
  6. 6.
    Greenberger JS, Epperly M. Bone marrow-derived stem cells and radiation response. Semin Radiat Oncol. 2009;19(2):133–9 PubMed PMID: 19249651.CrossRefPubMedGoogle Scholar
  7. 7.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28 PubMed PMID: 11304456.CrossRefPubMedGoogle Scholar
  8. 8.
    Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K, et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec. 2001;264(1):51–62 PubMed PMID: 11505371.CrossRefPubMedGoogle Scholar
  9. 9.
    Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2003;21(1):105–10 PubMed PMID: 12529557.CrossRefPubMedGoogle Scholar
  10. 10.
    Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98(8):2396–402 PubMed PMID: 11588036.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhu SF, Zhong ZN, Fu XF, Peng DX, Lu GH, Li WH, et al. Comparison of cell proliferation, apoptosis, cellular morphology and ultrastructure between human umbilical cord and placenta-derived mesenchymal stem cells. Neurosci Lett. 2013;29(541):77–82 PubMed PMID: 23523648.CrossRefGoogle Scholar
  12. 12.
    Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64(2):278–94 PubMed PMID: 9027588.CrossRefPubMedGoogle Scholar
  13. 13.
    Justesen J, Stenderup K, Eriksen EF, Kassem M. Maintenance of osteoblastic and adipolytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int. 2002;71(1):36–44 PubMed PMID: 12200657.CrossRefPubMedGoogle Scholar
  14. 14.
    Kuznetsov SA, Friedenstein AJ, Robey PG. Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol. 1997;97(3):561–70 PubMed PMID: 9207401.CrossRefPubMedGoogle Scholar
  15. 15.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7 PubMed PMID: 10102814.CrossRefPubMedGoogle Scholar
  16. 16.
    Young HE, Duplaa C, Romero-Ramos M, Chesselet MF, Vourc’h P, Yost MJ, et al. Adult reserve stem cells and their potential for tissue engineering. Cell Biochem Biophys. 2004;40(1):1–80 PubMed PMID: 14983110.CrossRefPubMedGoogle Scholar
  17. 17.
    Sun S, Guo Z, Xiao X, Liu B, Liu X, Tang PH, et al. Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells. 2003;21(5):527–35 PubMed PMID: 12968107.CrossRefPubMedGoogle Scholar
  18. 18.
    Barry F, Boynton R, Murphy M, Haynesworth S, Zaia J. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun. 2001;289(2):519–24 PubMed PMID: 11716504.CrossRefPubMedGoogle Scholar
  19. 19.
    Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun. 1999;265(1):134–9 PubMed PMID: 10548503.CrossRefPubMedGoogle Scholar
  20. 20.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7 PubMed PMID: 16923606.CrossRefPubMedGoogle Scholar
  21. 21.
    Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36 PubMed PMID: 19172693.CrossRefPubMedGoogle Scholar
  22. 22.
    Jones EA, English A, Kinsey SE, Straszynski L, Emery P, Ponchel F, et al. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry Part B, Clin Cytometry. 2006;70(6):391–9 PubMed PMID: 16977637.CrossRefGoogle Scholar
  23. 23.
    Bara JJ, Richards RG, Alini M, Stoddart MJ. Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells. 2014;32(7):1713–23 PubMed PMID: 24449458.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim HY, Kim H, Oh KW, Oh SI, Koh SH, Baik W, et al. Biological markers of mesenchymal stromal cells as predictors of response to autologous stem cell transplantation in patients with amyotrophic lateral sclerosis: an investigator-initiated trial and in vivo study. Stem Cells. 2014;32(10):2724–31 PubMed PMID: 24966156.CrossRefPubMedGoogle Scholar
  25. 25.
    Sun L, Wang D, Liang J, Zhang H, Feng X, Wang H, et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum. 2010;62(8):2467–75 PubMed PMID: 20506343.CrossRefPubMedGoogle Scholar
  26. 26.
    Reikvam H, Brenner AK, Hagen KM, Liseth K, Skrede S, Hatfield KJ, et al. The cytokine-mediated crosstalk between primary human acute myeloid cells and mesenchymal stem cells alters the local cytokine network and the global gene expression profile of the mesenchymal cells. Stem Cell Res. 2015;15(3):530–41 PubMed PMID: 26468600.CrossRefPubMedGoogle Scholar
  27. 27.
    Gallatin WM, Weissman IL, Butcher EC. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature. 1983;304(5921):30–4 PubMed PMID: 6866086.CrossRefPubMedGoogle Scholar
  28. 28.
    Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003;101(8):2999–3001 PubMed PMID: 12480709.CrossRefPubMedGoogle Scholar
  29. 29.
    Karkanitsa LV. Radiation damage to hematopoiesis: what do we know better? Stem Cells. 1997;15(Suppl 2):71–3 PubMed PMID: 9368288.PubMedGoogle Scholar
  30. 30.
    Nicolay NH, Sommer E, Lopez R, Wirkner U, Trinh T, Sisombath S, et al. Mesenchymal stem cells retain their defining stem cell characteristics after exposure to ionizing radiation. Int J Radiat Oncol Biol Phys. 2013;87(5):1171–8 PubMed PMID: 24351412.CrossRefPubMedGoogle Scholar
  31. 31.
    Cmielova J, Havelek R, Soukup T, Jiroutova A, Visek B, Suchanek J, et al. Gamma radiation induces senescence in human adult mesenchymal stem cells from bone marrow and periodontal ligaments. Int J Radiat Biol. 2012;88(5):393–404 PubMed PMID: 22348537.CrossRefPubMedGoogle Scholar
  32. 32.
    Singh S, Kloss FR, Brunauer R, Schimke M, Jamnig A, Greiderer-Kleinlercher B, et al. Mesenchymal stem cells show radioresistance in vivo. J Cell Mol Med. 2012;16(4):877–87 PubMed PMID: 21762375. Pubmed Central PMCID: 3822856.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Alessio N, Del Gaudio S, Capasso S, Di Bernardo G, Cappabianca S, Cipollaro M, et al. Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process. Oncotarget. 2015;6(10):8155–66 PubMed PMID: 25544750. Pubmed Central PMCID: 4480742.CrossRefPubMedGoogle Scholar
  34. 34.
    Nicolay NH, Liang Y, Lopez Perez R, Bostel T, Trinh T, Sisombath S, et al. Mesenchymal stem cells are resistant to carbon ion radiotherapy. Oncotarget. 2015;6(4):2076–87 PubMed PMID: 25504442. Pubmed Central PMCID: 4385837.CrossRefPubMedGoogle Scholar
  35. 35.
    Shim S, Lee SB, Lee JG, Jang WS, Lee SJ, Park S, et al. Mitigating effects of hUCB-MSCs on the hematopoietic syndrome resulting from total body irradiation. Exp Hematol. 2013;41(4):346–53 PubMed PMID: 23333483.CrossRefPubMedGoogle Scholar
  36. 36.
    Fekete N, Erle A, Amann EM, Furst D, Rojewski MT, Langonne A, et al. Effect of high-dose irradiation on human bone-marrow-derived mesenchymal stromal cells. Tissue Eng Part C, Methods. 2015;21(2):112–22 PubMed PMID: 24918644. Pubmed Central PMCID: 4313408.CrossRefGoogle Scholar
  37. 37.
    Nold P, Hackstein H, Riedlinger T, Kasper C, Neumann A, Mernberger M, et al. Immunosuppressive capabilities of mesenchymal stromal cells are maintained under hypoxic growth conditions and after gamma irradiation. Cytotherapy. 2015;17(2):152–62 PubMed PMID: 25453724.CrossRefPubMedGoogle Scholar
  38. 38.
    de Andrade AV, Riewaldt J, Wehner R, Schmitz M, Odendahl M, Bornhauser M, et al. Gamma irradiation preserves immunosuppressive potential and inhibits clonogenic capacity of human bone marrow-derived mesenchymal stromal cells. J Cell Mol Med. 2014;18(6):1184–93 PubMed PMID: 24655362. Pubmed Central PMCID: 4508157.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mehrara BJ, Avraham T, Soares M, Fernandez JG, Yan A, Zampell JC, et al. p21cip/WAF is a key regulator of long-term radiation damage in mesenchyme-derived tissues. FASEB J: Official Publ Fed Am Soc Exp Biol. 2010;24(12):4877–88 PubMed PMID: 20720160.CrossRefGoogle Scholar
  40. 40.
    Chen MF, Lin CT, Chen WC, Yang CT, Chen CC, Liao SK, et al. The sensitivity of human mesenchymal stem cells to ionizing radiation. Int J Radiat Oncol Biol Phys. 2006;66(1):244–53 PubMed PMID: 16839703.CrossRefPubMedGoogle Scholar
  41. 41.
    Islam MS, Stemig ME, Takahashi Y, Hui SK. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells. Journal Rad Res. 2015;56(2):269–77 PubMed PMID: 25425005. Pubmed Central PMCID: 4380046.CrossRefGoogle Scholar
  42. 42.
    Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K, et al. Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis. 2013;4:e844 PubMed PMID: 24113178. Pubmed Central PMCID: 3824648.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Park E, Ahn GN, Lee NH, Kim JM, Yun JS, Hyun JW, et al. Radioprotective properties of eckol against ionizing radiation in mice. FEBS Lett. 2008;582(6):925–30 PubMed PMID: 18294966.CrossRefPubMedGoogle Scholar
  44. 44.
    Lim JY, Yi T, Choi JS, Jang YH, Lee S, Kim HJ, et al. Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage. Oral Oncol. 2013;49(2):136–43 PubMed PMID: 22981389.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang H, Yang YF, Zhao L, Xiao FJ, Zhang QW, Wen ML, et al. Hepatocyte growth factor gene-modified mesenchymal stem cells reduce radiation-induced lung injury. Hum Gene Ther. 2013;24(3):343–53 PubMed PMID: 23458413.CrossRefPubMedGoogle Scholar
  46. 46.
    Francois S, Mouiseddine M, Allenet-Lepage B, Voswinkel J, Douay L, Benderitter M, et al. Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. BioMed Res Int. 2013;2013:151679 PubMed PMID: 24369528. Pubmed Central PMCID: 3863471.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Horton JA, Hudak KE, Chung EJ, White AO, Scroggins BT, Burkeen JF, et al. Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells. 2013;31(10):2231–41 PubMed PMID: 23897677.CrossRefPubMedGoogle Scholar
  48. 48.
    Yang X, Balakrishnan I, Torok-Storb B, Pillai MM. Marrow stromal cell infusion rescues hematopoiesis in lethally irradiated mice despite rapid clearance after infusion. Adv Hematol. 2012;2012:142530 Pubmed Central PMCID: 3287024.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Chang P, Qu Y, Liu Y, Cui S, Zhu D, Wang H, et al. Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis. 2013;4:e685 PubMed PMID: 23788042. Pubmed Central PMCID: 3698545.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bey E, Prat M, Duhamel P, Benderitter M, Brachet M, Trompier F, et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Repair Regeneration: Official Publ Wound Healing Soc Eur Tissue Repair Soc. 2010;18(1):50–8 PubMed PMID: 20082681.CrossRefGoogle Scholar
  51. 51.
    Kotenko K, Moroz B, Nadezhina N, Galstyan I, Eremin I, Deshevoy J, et al. Successful treatment of localised radiation lesions in rats and humans by mesenchymal stem cell transplantation. Radiat Prot Dosimetry. 2012;151(4):661–5 PubMed PMID: 23024175.CrossRefPubMedGoogle Scholar
  52. 52.
    Xie MW, Gorodetsky R, Micewicz ED, Mackenzie NC, Gaberman E, Levdansky L, et al. Marrow-derived stromal cell delivery on fibrin microbeads can correct radiation-induced wound-healing deficits. J Invest Dermatol. 2013;133(2):553–61 Pubmed Central PMCID: 3519961.CrossRefPubMedGoogle Scholar
  53. 53.
    Agay D, Scherthan H, Forcheron F, Grenier N, Herodin F, Meineke V, et al. Multipotent mesenchymal stem cell grafting to treat cutaneous radiation syndrome: development of a new minipig model. Exp Hematol. 2010;38(10):945–56 PubMed PMID: 20600578.CrossRefPubMedGoogle Scholar
  54. 54.
    Xia Z, Zhang C, Zeng Y, Wang T, Ai G. Transplantation of BMSCs expressing hVEGF165/hBD3 promotes wound healing in rats with combined radiation-wound injury. Int Wound J. 2014;11(3):293–303 PubMed PMID: 23137415.CrossRefPubMedGoogle Scholar
  55. 55.
    Yan G, Sun H, Wang F, Wang J, Wang F, Zou Z, et al. Topical application of hPDGF-A-modified porcine BMSC and keratinocytes loaded on acellular HAM promotes the healing of combined radiation-wound skin injury in minipigs. Int J Radiat Biol. 2011;87(6):591–600 PubMed PMID: 21627564.CrossRefPubMedGoogle Scholar
  56. 56.
    Hu J, Yang Z, Wang J, Tang Y, Liu H, Zhang B, et al. Infusion of Trx-1-overexpressing hucMSC prolongs the survival of acutely irradiated NOD/SCID mice by decreasing excessive inflammatory injury. PloS One. 2013;8(11):e78227 Pubmed Central PMCID: 3817237.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gao Z, Zhang Q, Han Y, Cheng X, Lu Y, Fan L, et al. Mesenchymal stromal cell-conditioned medium prevents radiation-induced small intestine injury in mice. Cytotherapy. 2012;14(3):267–73 PubMed PMID: 21958222.CrossRefPubMedGoogle Scholar
  58. 58.
    Semont A, Mouiseddine M, Francois A, Demarquay C, Mathieu N, Chapel A, et al. Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ. 2010;17(6):952–61 PubMed PMID: 20019749.CrossRefPubMedGoogle Scholar
  59. 59.
    Linard C, Tissedre F, Busson E, Holler V, Leclerc T, Strup-Perrot C, et al. Therapeutic potential of gingival fibroblasts for cutaneous radiation syndrome: comparison to bone marrow-mesenchymal stem cell grafts. Stem Cells Dev. 2015;24(10):1182–93 PubMed PMID: 25584741. Pubmed Central PMCID: 4425223.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jiang X, Jiang X, Qu C, Chang P, Zhang C, Qu Y, et al. Intravenous delivery of adipose-derived mesenchymal stromal cells attenuates acute radiation-induced lung injury in rats. Cytotherapy. 2015;17(5):560–70 PubMed PMID: 25791071.CrossRefPubMedGoogle Scholar
  61. 61.
    Bessout R, Semont A, Demarquay C, Charcosset A, Benderitter M, Mathieu N. Mesenchymal stem cell therapy induces glucocorticoid synthesis in colonic mucosa and suppresses radiation-activated T cells: new insights into MSC immunomodulation. Mucosal Immunol. 2014;7(3):656–69 PubMed PMID: 24172849.CrossRefPubMedGoogle Scholar
  62. 62.
    Linard C, Busson E, Holler V, Strup-Perrot C, Lacave-Lapalun JV, Lhomme B, et al. Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs. Stem Cells Trans Med. 2013;2(11):916–27 Pubmed Central PMCID: 3808206.CrossRefGoogle Scholar
  63. 63.
    Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 2000;290(5497):1775–9 PubMed PMID: 11099418.CrossRefPubMedGoogle Scholar
  64. 64.
    Mouiseddine M, Francois S, Semont A, Sache A, Allenet B, Mathieu N, et al. Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Brit J Radiol. 2007;80(Spec No 1):S49–55 PubMed PMID: 17704326.CrossRefPubMedGoogle Scholar
  65. 65.
    Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3(9):778–84 PubMed PMID: 11533656.CrossRefPubMedGoogle Scholar
  66. 66.
    Chen Z, Wang Y, Shi C. Therapeutic implications of newly identified stem cell populations from the skin dermis. Cell Transpl. 2015;24(8):1405–22 PubMed PMID: 24972091.CrossRefGoogle Scholar
  67. 67.
    Perng CK, Ku HH, Chiou SH, Chen IL, Tsai FT, Yang YP, et al. Evaluation of wound healing effect on skin-defect nude mice by using human dermis-derived mesenchymal stem cells. Transpl Proc. 2006;38(9):3086–7 PubMed PMID: 17112905.CrossRefGoogle Scholar
  68. 68.
    Akita S, Akino K, Hirano A, Ohtsuru A, Yamashita S. Mesenchymal stem cell therapy for cutaneous radiation syndrome. Health Phys. 2010;98(6):858–62 PubMed PMID: 20445394.CrossRefPubMedGoogle Scholar
  69. 69.
    Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Nat Acad Sci U S A. 2003;100(14):8407–11 Pubmed Central PMCID: 166242.CrossRefGoogle Scholar
  70. 70.
    Brody AR, Salazar KD, Lankford SM. Mesenchymal stem cells modulate lung injury. Proc Am Thorac Soc. 2010;7(2):130–3 PubMed PMID: 20427585. Pubmed Central PMCID: 3266019.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells. 2010;28(10):1856–68 PubMed PMID: 20734355. Pubmed Central PMCID: 3114043.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hanson SE, Bentz ML, Hematti P. Mesenchymal stem cell therapy for nonhealing cutaneous wounds. Plast Reconstr Surg. 2010;125(2):510–6 PubMed PMID: 20124836. Pubmed Central PMCID: 4076140.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lataillade JJ, Doucet C, Bey E, Carsin H, Huet C, Clairand I, et al. New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy. Regenerative Med. 2007;2(5):785–94 PubMed PMID: 17907931.CrossRefGoogle Scholar
  74. 74.
    Hu KX, Sun QY, Guo M, Ai HS. The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury. Br J Radiol. 2010;83(985):52–8 PubMed PMID: 20139249. Pubmed Central PMCID: 3487250.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293(5528):293–7 PubMed PMID: 11452123.CrossRefPubMedGoogle Scholar
  76. 76.
    Semont A, Francois S, Mouiseddine M, Francois A, Sache A, Frick J, et al. Mesenchymal stem cells increase self-renewal of small intestinal epithelium and accelerate structural recovery after radiation injury. Adv Exp Med Biol. 2006;585:19–30 PubMed PMID: 17120774.CrossRefPubMedGoogle Scholar
  77. 77.
    Voswinkel J, Francois S, Simon JM, Benderitter M, Gorin NC, Mohty M, et al. Use of mesenchymal stem cells (MSC) in chronic inflammatory fistulizing and fibrotic diseases: a comprehensive review. Clin Rev Allergy Immunol. 2013;45(2):180–92 PubMed PMID: 23296948.CrossRefPubMedGoogle Scholar
  78. 78.
    Francois M, Birman E, Forner KA, Gaboury L, Galipeau J. Adoptive transfer of mesenchymal stromal cells accelerates intestinal epithelium recovery of irradiated mice in an interleukin-6-dependent manner. Cytotherapy. 2012;14(10):1164–70 PubMed PMID: 22574720.CrossRefPubMedGoogle Scholar
  79. 79.
    Kudo K, Liu Y, Takahashi K, Tarusawa K, Osanai M, Hu DL, et al. Transplantation of mesenchymal stem cells to prevent radiation-induced intestinal injury in mice. J Rad Res. 2010;51(1):73–9 PubMed PMID: 19851042.CrossRefGoogle Scholar
  80. 80.
    Zhang J, Gong JF, Zhang W, Zhu WM, Li JS. Effects of transplanted bone marrow mesenchymal stem cells on the irradiated intestine of mice. J Biomed Sci. 2008;15(5):585–94 PubMed PMID: 18763056.CrossRefPubMedGoogle Scholar
  81. 81.
    Mouiseddine M, Francois S, Souidi M, Chapel A. Intravenous human mesenchymal stem cells transplantation in NOD/SCID mice preserve liver integrity of irradiation damage. Methods Mol Biol. 2012;826:179–88 PubMed PMID: 22167649.CrossRefPubMedGoogle Scholar
  82. 82.
    Lin CY, Chang FH, Chen CY, Huang CY, Hu FC, Huang WK, et al. Cell therapy for salivary gland regeneration. J Dent Res. 2011;90(3):341–6 PubMed PMID: 21297017.CrossRefPubMedGoogle Scholar
  83. 83.
    Hao L, Wang J, Zou Z, Yan G, Dong S, Deng J, et al. Transplantation of BMSCs expressing hPDGF-A/hBD2 promotes wound healing in rats with combined radiation-wound injury. Gene Ther. 2009;16(1):34–42 PubMed PMID: 18701914.CrossRefPubMedGoogle Scholar
  84. 84.
    Spyrou GE, Watt DA, Naylor IL. The origin and mode of fibroblast migration and proliferation in granulation tissue. Br J Plast Surg. 1998;51(6):455–61 PubMed PMID: 9849366.CrossRefPubMedGoogle Scholar
  85. 85.
    Coppes RP, van der Goot A, Lombaert IM. Stem cell therapy to reduce radiation-induced normal tissue damage. Semin Radiat Oncol. 2009;19(2):112–21 PubMed PMID: 19249649.CrossRefPubMedGoogle Scholar
  86. 86.
    Chunmeng S, Tianmin C. Skin: a promising reservoir for adult stem cell populations. Med Hypotheses. 2004;62(5):683–8 PubMed PMID: 15082090.CrossRefPubMedGoogle Scholar
  87. 87.
    Shi C, Cheng T. Effects of acute wound environment on neonatal rat dermal multipotent cells. Cells Tissues Organs. 2003;175(4):177–85 PubMed PMID: 14707398.CrossRefPubMedGoogle Scholar
  88. 88.
    Zhu Y, Su Y, Cheng T, Chung LW, Shi C. Beta2-microglobulin as a potential factor for the expansion of mesenchymal stem cells. Biotechnol Lett. 2009;31(9):1361–5 Pubmed Central PMCID: 2984555.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Chunmeng S, Tianmin C, Yongping S, Xinze R, Yue M, Jifu Q, et al. Effects of dermal multipotent cell transplantation on skin wound healing. J Surg Res. 2004;121(1):13–9 PubMed PMID: 15313369.CrossRefPubMedGoogle Scholar
  90. 90.
    Shi C, Zhu Y, Su Y, Cheng T. Stem cells and their applications in skin-cell therapy. Trends Biotechnol. 2006;24(1):48–52 PubMed PMID: 16298447.CrossRefPubMedGoogle Scholar
  91. 91.
    Qu J, Cheng T, Shi C, Lin Y, Ran X. A study on the activity of fibroblast cells in connection with tissue recovery in the wounds of skin injury after whole-body irradiation. J Radat Res. 2004;45(2):341–4 PubMed PMID: 15304979.CrossRefGoogle Scholar
  92. 92.
    Shi C, Cheng T, Su Y, Mai Y, Qu J, Lou S, et al. Transplantation of dermal multipotent cells promotes survival and wound healing in rats with combined radiation and wound injury. Radiat Res. 2004;162(1):56–63 PubMed PMID: 15222801.CrossRefPubMedGoogle Scholar
  93. 93.
    Zhang C, Peng Y, Wang F, Tan X, Liu N, Fan S, et al. A synthetic cantharidin analog for the enhancement of doxorubicin suppression of stem cell-derived aggressive sarcoma. Biomaterials. 2010;31(36):9535–43 PubMed PMID: 20875681.CrossRefPubMedGoogle Scholar
  94. 94.
    Shi C, Mai Y, Zhu Y, Cheng T, Su Y. Spontaneous transformation of a clonal population of dermis-derived multipotent cells in culture. Vitro Cell Dev Biol Anim. 2007;43(8–9):290–6 PubMed PMID: 17876677.CrossRefGoogle Scholar
  95. 95.
    Shi C, Zhang C, Su Y, Cheng T. Cyanine dyes in optical imaging of tumours. Lancet Oncol. 2010;11(9):815–6 PubMed PMID: 20816373.CrossRefPubMedGoogle Scholar
  96. 96.
    Singh AK, Gudehithlu KP, Patri S, Litbarg NO, Sethupathi P, Arruda JA, et al. Impaired integration of endothelial progenitor cells in capillaries of diabetic wounds is reversible with vascular endothelial growth factor infusion. Trans Res: J Lab Clin Med. 2007;149(5):282–91 PubMed PMID: 17466928.CrossRefGoogle Scholar
  97. 97.
    Chen Z, Dai T, Chen X, Tan L, Shi C. Activation and regulation of the granulation tissue derived cells with stemness-related properties. Stem Cell Res Ther. 2015;6:85 PubMed PMID: 25925316. Pubmed Central PMCID: 4446126.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9 PubMed PMID: 19098906. Pubmed Central PMCID: 2706487.CrossRefPubMedGoogle Scholar
  99. 99.
    Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58(7):929–39 PubMed PMID: 19136511.CrossRefPubMedGoogle Scholar
  100. 100.
    Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell. 2012;10(5):544–55 PubMed PMID: 22542159. Pubmed Central PMCID: 3348385.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Li YP, Paczesny S, Lauret E, Poirault S, Bordigoni P, Mekhloufi F, et al. Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J Immunol. 2008;180(3):1598–608 PubMed PMID: 18209056.CrossRefPubMedGoogle Scholar
  102. 102.
    Haragopal H, Yu D, Zeng X, Kim SW, Han IB, Ropper AE, et al. Stemness enhancement of human neural stem cells following bone marrow MSC coculture. Cell Transpl. 2015;24(4):645–59 PubMed PMID: 25719952.CrossRefGoogle Scholar
  103. 103.
    Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, et al. Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transp. 2010;19(6):667–79 PubMed PMID: 20525442. Pubmed Central PMCID: 2957533.CrossRefGoogle Scholar
  104. 104.
    Chan WK, Lau AS, Li JC, Law HK, Lau YL, Chan GC. MHC expression kinetics and immunogenicity of mesenchymal stromal cells after short-term IFN-gamma challenge. Exp Hematol. 2008;36(11):1545–55 PubMed PMID: 18715686.CrossRefPubMedGoogle Scholar
  105. 105.
    Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–72 PubMed PMID: 16141348.CrossRefPubMedGoogle Scholar
  106. 106.
    Qiao S, Ren H, Shi Y, Liu W. Allogeneic compact bone-derived mesenchymal stem cell transplantation increases survival of mice exposed to lethal total body irradiation: a potential immunological mechanism. Chin Med J. 2014;127(3):475–82 PubMed PMID: 24451953.PubMedGoogle Scholar
  107. 107.
    Gil-Sanchis C, Cervello I, Khurana S, Faus A, Verfaillie C, Simon C. Contribution of different bone marrow-derived cell types in endometrial regeneration using an irradiated murine model. Fertil Steril. 2015;103(6):1596–605 PubMed PMID: 25813284.CrossRefPubMedGoogle Scholar
  108. 108.
    Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol. 2008;294(3):C675–82.CrossRefPubMedGoogle Scholar
  109. 109.
    Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PloS One. 2008;3(4):e1886 PubMed PMID: 18382669. Pubmed Central PMCID: 2270908.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–59 PubMed PMID: 17615264.CrossRefPubMedGoogle Scholar
  111. 111.
    Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS, et al. Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells. 2007;25(7):1761–8 PubMed PMID: 17395769.CrossRefPubMedGoogle Scholar
  112. 112.
    Stout RD, Suttles J. Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age-associated microenvironmental changes. Immunol Rev. 2005;205:60–71 PubMed PMID: 15882345. Pubmed Central PMCID: 1201508.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362(9385):697–703 PubMed PMID: 12957092.CrossRefPubMedGoogle Scholar
  114. 114.
    Liu H, Liu S, Li Y, Wang X, Xue W, Ge G, et al. The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PloS One. 2012;7(4):e34608 PubMed PMID: 22511954. Pubmed Central PMCID: 3325280.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Lu MH, Li CZ, Hu CJ, Fan YH, Wang SM, Wu YY, et al. microRNA-27b suppresses mouse MSC migration to the liver by targeting SDF-1alphain vitro. Biochem Biophys Res Commun. 2012;421(2):389–95 PubMed PMID: 22516754.CrossRefPubMedGoogle Scholar
  116. 116.
    Farhadi MR, Capelle HH, Erber R, Ullrich A, Vajkoczy P. Combined inhibition of vascular endothelial growth factor and platelet-derived growth factor signaling: effects on the angiogenesis, microcirculation, and growth of orthotopic malignant gliomas. J Neurosurg. 2005;102(2):363–70 PubMed PMID: 15739567.CrossRefPubMedGoogle Scholar
  117. 117.
    Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regeneration: Official Publ Wound Healing Soc Eur Tissue Repair Soc. 2008;16(5):585–601 PubMed PMID: 19128254.CrossRefGoogle Scholar
  118. 118.
    Carvalho AC, Sharpe J, Rosenstock TR, Teles AF, Youle RJ, Smaili SS. Bax affects intracellular Ca2+ stores and induces Ca2+ wave propagation. Cell Death Differ. 2004;11(12):1265–76 PubMed PMID: 15499375.CrossRefPubMedGoogle Scholar
  119. 119.
    Floros KV, Thomadaki H, Katsaros N, Talieri M, Scorilas A. mRNA expression analysis of a variety of apoptosis-related genes, including the novel gene of the BCL2-family, BCL2L12, in HL-60 leukemia cells after treatment with carboplatin and doxorubicin. Biol Chem. 2004;385(11):1099–103 PubMed PMID: 15576332.CrossRefPubMedGoogle Scholar
  120. 120.
    Mylonas PG, Matsouka PT, Papandoniou EV, Vagianos C, Kalfarentzos F, Alexandrides TK. Growth hormone and insulin-like growth factor I protect intestinal cells from radiation induced apoptosis. Mol Cell Endocrinol. 2000;160(1–2):115–22 PubMed PMID: 10715545.CrossRefPubMedGoogle Scholar
  121. 121.
    Potten CS, Merritt A, Hickman J, Hall P, Faranda A. Characterization of radiation-induced apoptosis in the small intestine and its biological implications. Int J Radiat Biol. 1994;65(1):71–8 PubMed PMID: 7905913.CrossRefPubMedGoogle Scholar
  122. 122.
    Meier RP, Mahou R, Morel P, Meyer J, Montanari E, Muller YD, et al. Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. J Hepatol. 2015;62(3):634–41 PubMed PMID: 25450712.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive MedicineThird Military Medical UniversityChongqingChina

Personalised recommendations