Cognitive Radio Testbeds: State of the Art and an Implementation

  • Selahattin GokceliEmail author
  • Gunes Karabulut Kurt
  • Emin Anarim
Part of the Signals and Communication Technology book series (SCT)


Cognitive radio (CR) technology is a potential solution to the spectrum scarcity problem. In CR systems, the availability of the licensed spectrum portion is monitored by the spectrum sensing process and strategies are applied to use this licensed portion without interfering with active primary users (PU). CR provides a flexible system that secondary users (SU) can make decisions about the spectrum usage at any time by simply configuring corresponding transmission parameters. However, implementation of CR systems can be a challenging task due to characteristic difficulties of the wireless channels introduced by fading. Especially spectrum sensing process is affected by changing channel conditions, which should be considered in order to create a high performance CR system. Robust spectrum sensing is essential for a CR system due to its vital role in the efficient usage of the spectrum. Therefore, several algorithms that are proposed for this issue should contain suitable properties considering realistic channel conditions. Implementation of these algorithms can be realized through software defined radios (SDRs). SDR is a core component of the CR technology and it allows a practical development process with modification on the software rather than hardware. Thus, SDR based approaches to CR problems are quite effective. In this chapter, the state of the art of CR systems are explained in detail by highlighting essential components of the existing studies. Effective approaches to the implementation using SDR systems are given. Moreover, an energy detection based spectrum sensing implementation for 2.4 GHz ISM band is given as an implementation example and channel based spectrum usage is analyzed by using SDR tools LabVIEW and NI USRP-2921 hardware in real-time.


Software defined radio cognitive radio spectrum sensing energy detection wireless channels 


  1. 1.
    Ahmed, S., Hossain, M.S., Abdullah, M., Hossain, M.A.: Cooperative spectrum sensing over Rayleigh fading channel in cognitive radio. Int. J. Electron. Comput. Sci. Eng. 1(4), 2583–2592 (2012)Google Scholar
  2. 2.
    Blad, A., Axell, E., Larsson, E.G.: Spectrum sensing of OFDM signals in the presence of CFO: New algorithms and empirical evaluation using USRP. In: IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 159–163. doi: 10.1109/SPAWC.2012.6292878
  3. 3.
    Bogale, T.E., Vandendorpe, L.: USRP implementation of max-min SNR signal energy based spectrum sensing algorithms for cognitive radio networks. In: IEEE International Conference on Communications (ICC), pp. 1478–1482 (2014). doi: 10.1109/ICC.2014.6883530
  4. 4.
    Cabric, D., Mishra, S., Brodersen, R.: Implementation issues in spectrum sensing for cognitive radios. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers., vol. 1, pp. 772–776. doi: 10.1109/ACSSC.2004.1399240
  5. 5.
    Chen, Z., Zhang, C., Lin, F., Yu, J., Li, X., Song, Y., Ranganathan, R., Guo, N., Qiu, R.C.: Towards a large-scale cognitive radio network: Testbed, intensive computing, frequency agility and security. In: International Conference on Computing, Networking and Communications (ICNC), pp. 556–562 (2012). doi: 10.1109/ICCNC.2012.6167484
  6. 6.
    Denkovski, D., Pavloski, M., Atanasovski, V., Gavrilovska, L.: Parameter settings for 2.4GHz ISM spectrum measurements. In: 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), pp. 1–5 (2010). doi: 10.1109/ISABEL.2010.5702772
  7. 7.
    Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005)Google Scholar
  8. 8.
    Goldsmith, A., Jafar, S.A., Maric, I., Srinivasa, S.: Breaking spectrum gridlock with cognitive radios: an information theoretic perspective. Proc. IEEE 97(5), 894–914 (2009). doi: 10.1109/JPROC.2009.2015717 CrossRefGoogle Scholar
  9. 9.
    Hickling, R.M.: New technology facilitates true software-defined radio. RF Design Mag. (2005)Google Scholar
  10. 10.
    Instruments, N.: (2016)
  11. 11.
    Instruments, N.: Spectrum Monitoring with NI USRP. (2016)
  12. 12.
    Jiang, C., Beaulieu, N.C., Zhang, L., Ren, Y., Peng, M., Chen, H.H.: Cognitive radio networks with asynchronous spectrum sensing and access. IEEE Netw. 29(3), 88–95 (2015). doi: 10.1109/MNET.2015.7113231 CrossRefGoogle Scholar
  13. 13.
    Kishore, R., Ramesha, C.K., Sharma, V., Joshi, R.: Performance evaluation of energy based spectrum sensing in multipath fading channel for cognitive radio system. In: National Conference on Communication, Signal Processing and Networking (NCCSN), pp. 1–6 (2014). doi: 10.1109/NCCSN.2014.7001153
  14. 14.
    Kumar, P.V., Sai, M.L.N.: SDR based MIMO link adaptation for cognitive radio application. In: International Conference on Communications and Signal Processing (ICCSP), pp. 577–581 (2014). doi: 10.1109/ICCSP.2014.6949907
  15. 15.
    Liang, Y.C., Chen, K.C., Li, G.Y., Mahonen, P.: Cognitive radio networking and communications: an overview. IEEE Trans. Veh. Technol. 60(7), 3386–3407 (2011). doi: 10.1109/TVT.2011.2158673 CrossRefGoogle Scholar
  16. 16.
    Mitola, J.: The software radio architecture. IEEE Commun. Mag. 33(5), 26–38 (1995)CrossRefGoogle Scholar
  17. 17.
    Najafzadeh, E., George, D., Green, M.P.: Labview-based spectrum occupancy measurements. In: ARSR-SWICOM, The First Conference on Applied Radio Systems Research and Smart Wireless Communications, pp. 1–6 (2012)Google Scholar
  18. 18.
    Nir, V.L., Scheers, B.: Description of a cognitive radio testbed based on USRP platforms and CogWave. In: 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), pp. 514–519 (2014). doi: 10.4108/icst.crowncom.2014.255432
  19. 19.
    Sarijari, M.A., Marwanto, A., Fisal, N., Yusof, S.K.S., Rashid, R.A., Satria, M.H.: Energy detection sensing based on GNU radio and USRP: An analysis study. In: 2009 IEEE 9th Malaysia International Conference on Communications (MICC), pp. 338–342 (2009). doi: 10.1109/MICC.2009.5431525
  20. 20.
    Sarijari, M.A., Rashid, R.A., Fisal, N., Lo, A., Yusof, S., Mahalin, N.: Dynamic spectrum access using cognitive radio utilizing GNU radio and USRP. In: 26th Wireless World Research Forum (WWRF26) (2011)Google Scholar
  21. 21.
    Shahid, H., Yao, Y.D.: Algorithm and experimentation of frequency hopping, band hopping, and transmission band selection using a cognitive radio test bed. In: 23rd Wireless and Optical Communication Conference (WOCC), pp. 1–5 (2014). doi: 10.1109/WOCC.2014.6839956
  22. 22.
    Sharma, N., Rawat, D.B., Bista, B.B., Shetty, S.: A testbed using USRP and LabView for dynamic spectrum access in cognitive radio networks. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications, pp. 735–740 (2015). doi: 10.1109/AINA.2015.261
  23. 23.
    Shukla, A., Burbidge, E., Usman, I.: Cognitive radios—what are they and why are the military and civil users interested in them. In: EuCAP. The Second European Conference on Antennas and Propagation, pp. 1–10 (2007)Google Scholar
  24. 24.
    Soltani, S., Sagduyu, Y., Shi, Y., Li, J., Feldman, J., Matyjas, J.: Distributed cognitive radio network architecture, SDR implementation and emulation testbed. In: IEEE Military Communications Conference, MILCOM, pp. 438–443 (2015). doi: 10.1109/MILCOM.2015.7357482
  25. 25.
    Sun, G., Liu, G., Wang, Y.: SDN architecture for cognitive radio networks. In: 1st International Workshop on Cognitive Cellular Systems (CCS), pp. 1–5 (2014). doi: 10.1109/CCS.2014.6933795
  26. 26.
    Tucker, D.C., Tagliarini, G.A.: Prototyping with GNU radio and the USRP—where to begin. IEEE Southeastcon 2009, 50–54 (2009). doi: 10.1109/SECON.2009.5174048 Google Scholar
  27. 27.
    Xu, J., Alam, F.: Adaptive energy detection for cognitive radio: an experimental study. In: 12th International Conference on Computers and Information Technology, ICCIT, pp. 547–551 (2009). doi: 10.1109/ICCIT.2009.5407298
  28. 28.
    Yang, J.J., Huang, M., Yu, J., Li, L., Li, L.: USRP: a flexible platform for spectrum monitoring. Appl. Mech. Mater. Trans Tech Publ 610, 233–240 (2014)Google Scholar
  29. 29.
    Yoshimura, R.S., Mathilde, F.S., Dantas, J.P., de S Jr VA, da Cruz Jr J.H., Bazzo, J.J., Melgarejo, D.C.: A USRP based scheme for cooperative sensing networks. In: Anais do 4 Workshop de Redes de Acesso em Banda Larga—WRA 2014, Brazil, pp. 1–5 (2014)Google Scholar
  30. 30.
    Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11(1), 116–130 (2009). doi: 10.1109/SURV.2009.090109 CrossRefGoogle Scholar
  31. 31.
    Zhang, Z., Zhang, W., Zeadally, S., Wang, Y., Liu, Y.: Cognitive radio spectrum sensing framework based on multi-agent architecture for 5G networks. IEEE Wirel. Commun. 22(6), 34–39 (2015). doi: 10.1109/MWC.2015.7368822 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Selahattin Gokceli
    • 1
    Email author
  • Gunes Karabulut Kurt
    • 1
  • Emin Anarim
    • 2
  1. 1.Wireless Communications Research Laboratory, Department of Electronics and Communication EngineeringIstanbul Technical UniversityIstanbulTurkey
  2. 2.Signal and Image Processing Group, Department of Electrical and Electronic EngineeringBogazici UniversityIstanbulTurkey

Personalised recommendations