Advertisement

Modification of Nanoclay Systems: An Approach to Explore Various Applications

  • Mohd Amil Usmani
  • Imran KhanEmail author
  • Naheed Ahmad
  • A. H. Bhat
  • Dhananjay K. Sharma
  • Jahangir Ahmad Rather
  • Syed Imran Hassan
Chapter
  • 876 Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Nanoclay has a great potential in various fields. Small amount of nanoclay can change the whole physical and chemical properties of polymers, paints, inks and lubricants by dispersing nanoclay layers into the polymer matrices. The flexibility of interlayer gallery of nanoclay helps in the release of drugs to the targeted place. The controlled release of drugs takes place on account of the drug incorporated within the nanoclay galleries. This makes these nanomaterials as potential materials with its application in pharmaceutical field. Organoclays, a type of nanoclay are also being utilized for waste water treatment in junction with other sorbents viz. activated carbon and alum. Organoclays have been found to be the finest material for water treatment especially when the water contains enough amounts of oil and grease or humic acid. The use of nanoclays as reinforcing agent or additives in polymers for various properties is exploited for various applications. This chapter provides an overview of nanoclays or types of nanoclays with significance on the utilization of nanoclays as the filler in polymer matrices for the synthesis/fabrication of polymer nanocomposites, drug delivery agents, viscosity modifier for coatings, inks and lubricants and nanoclays for industrial effluent as well as potable water treatment.

Keywords

Nanoclays Characterization Montmorillonite Nanoclays application Nanoclays modification 

Notes

Acknowledgment

The author’s are thankful to their respective universities for providing internet facilities for collecting the research paper. Author Dhananjay K. Sharma would also like to thanks the Svaagata Erasmus Mundus for funding.

References

  1. Abdel-Rahman, A.-F.M.: Chlorites in a spectrum of igneous rocks: mineral chemistry and paragenesis. Mineral. Mag. 59, 129–141 (1995)CrossRefGoogle Scholar
  2. Ahmad, M.B., Hoidy, W.H., Ibrahim, N.A.B., Al-Mulla, E.A.J.: Modification of montmorillonite by new surfactants. J. Eng. Appl. Sci. 4(3), 184–188 (2009)Google Scholar
  3. Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R 28, 1–63 (2000)CrossRefGoogle Scholar
  4. Ambre, A.H., Katti, K.S., Katti, D.R.: Nanoclay based composite scaffolds for bone tissue engineering applications. J. Nanotechnol. Eng. Med. 1(3), 031013 (2010)CrossRefGoogle Scholar
  5. Ambre, A., Katti, K.S., Katti, D.R.: In situ mineralized hydroxyapatite on amino acid modified nanoclays as novel bone biomaterials. Mater. Sci. Eng. C-Mater. Biol. Appl. 31(5), 1017–1029 (2011)CrossRefGoogle Scholar
  6. Aranda, P., Eduardo, R.-H.: Poly(ethylene oxide)-silicate intercalation materials. Chem. Mater. 4, 1395–1403 (1992)Google Scholar
  7. Ardenne, M., Endell, K., Hofmann, U.: Investigation of the finest fraction of bentonite and clay soil with the universal electron microscope. Ber. Deut. Keram. Ges. 21, 207–227 (1940)Google Scholar
  8. Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J.M.: Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym. Degrad. Stab. 95(11), 2126–2146 (2010)CrossRefGoogle Scholar
  9. Azeez, A.A., Rhee, K.Y., Park, S.J., Hui, D.: Epoxy clay nanocomposites—processing, properties and applications: A review. Compos. Part B-Eng. 45(1), 308–320 (2013)CrossRefGoogle Scholar
  10. Bai, Y.-X., Li, Y.-F., Yong Y., Yi, L.-X.: Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres. Process. Biochem. 41, 770–777 (2006)Google Scholar
  11. Batra, M., Gotam, S., Dadarwal, P., Nainwani, R., Sharma, M.: Nano-clay as polymer porosity reducer: a review. J. Pharm. Sci. Technol. 3(10), 709–716 (2011)Google Scholar
  12. Beall, G.W.: The use of organo-clays in water treatment. Appl. Clay Sci. 24, 11–20 (2003)Google Scholar
  13. Becker, O., Varley, R.J., Simon, G.P.: Thermal stability and water uptake of high perfmormance epoxy layered sili-cate nanocomposites. Euro. Polym. J. 40, 187–195 (2004)CrossRefGoogle Scholar
  14. Bergman, J.S., Chen, H., Giannelis, E.P., Thomas, M.G., Coates, G.W.: Synthesis and characterization of polyolefin-silicate nanocomposites: a catalyst intercalation and in situ polymerization approach. Chem. Commun. (21), 2179–2180Google Scholar
  15. Chang, J.H., Kim, S.J., Joo, Y.L., Im, S.: Poly(ethylene terephthalate) nanocomposites by in situ interlayer polymerization: the thermo-mechanical properties and morphology of the hybrid fibers. Polymer 45(3), 919–926 (2004)CrossRefGoogle Scholar
  16. Chen, Y.-M., Tsao, T.-M., Wang, M.-K.: Removal of Crystal Violet and Methylene Blue from Aqueous Solution using Soil Nano-Clays Paper presented at the Proceedings of Conference on Environmental Science and Engineering (2011)Google Scholar
  17. Chen, C.G., Khobaib, M., Curliss, D.: Epoxy layered-silicate nanocomposites. Prog. Org. Coat. 47(3–4), 376–383 (2003)CrossRefGoogle Scholar
  18. Chigwada, G., Wang, D., Jiang, D.D., Wilkie, C.A.: Styrenic nanocomposites prepared using a novel biphenyl-containing modified clay. Polym. Degrad. Stab. 91, 755–762 (2006)CrossRefGoogle Scholar
  19. Chowdary, M.S., Kumar, M.S.R.N.: Effect of nanoclay on the mechanical properties of polyester and S-Glass fiber (Al). Int. J. Adv. Sci. Technol. 74, 35–42 (2015)CrossRefGoogle Scholar
  20. Chu, D.: The effect of matrix molecular weight on the dispersion of nanoclay in unmodified high density polyethylene (2006)Google Scholar
  21. Chung, Y.L., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E.P., Lai, H.M.: Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydr. Polym. 79(2), 391–396 (2010)CrossRefGoogle Scholar
  22. Cygan, R.T., Greathouse, J.A., Heinz, H., Kalinichev, A.G.: Molecular models and simulations of layered materials. J. Mater. Chem. 19(17), 2470–2481 (2009)CrossRefGoogle Scholar
  23. de Lima J.A., Pinotti, C.A., Felisberti, M.I., Gonçalves, M.C.: Blends and clay nanocomposites of cellulose acetate and poly(epichlorohydrin). Compos. Part B-Eng. 43(23), 75–81 (2012)Google Scholar
  24. Delhom C.D., White-Ghoorahoo. L.A., Pang, S.S.: Development and characterization of cellulose/clay nanocomposites. Compos. Part B-Eng. 41(4), 75–81 (2010)Google Scholar
  25. Delozier, D.M., Orwoll, R.A., Cahoon, J.F., Ladislaw, J.S., Smith, J.G., Connell, J.W.: Polyimide nanocomposites prepared from high-temperature, reduced charge organoclays. Polymer 44(8), 2231–2241 (2003)CrossRefGoogle Scholar
  26. Deshmanea, C., Yuan, Q., Perkins, R.S., Misra, R.D.K.: On striking variation in impact toughness of polyethylene-clay and polypropylene-clay nanocomposite systems: the effect of clay-polymer interaction. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 458(1–2), 150–157 (2007)CrossRefGoogle Scholar
  27. Dong, Y.C., Feng, S.S.: Poly(D, L-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials 26(30), 6068–6076 (2005)CrossRefGoogle Scholar
  28. Ewell, R.H., Insiey, Herbert: Hydrothermal synthesis of kaolinite, dickite, beidellite, and nontronite. Notl. Bur. Stand. Jour. Res. 15, 173–185 (1935)CrossRefGoogle Scholar
  29. Fejer, I., Kata, M., Eros, I., Berkesi, O., Dekany, I.: Release of cationic drugs from loaded clay minerals. Colloid Polym. Sci. 279(12), 1177–1182 (2001)CrossRefGoogle Scholar
  30. Ferreira, J.A.M., Reis, P.N.B., Costa, J.D.M., Richardson, B.C.H., Richardson, M.O.W.: A study of the mechanical properties on polypropylene enhanced by surface treated nanoclays. Compos. Part B-Eng. 42(6), 1366–1372 (2011)CrossRefGoogle Scholar
  31. Floody, M.C., Theng, B.K.G., Mora, M.L.: Natural nanoclays: applications and future trends-a Chilean perspective. Clay Min. 44(2), 161–176 (2009)CrossRefGoogle Scholar
  32. Fukushima, Y., Inagaki, S.: Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J. Incl. Phenom. 5(4), 473–482 (1987)CrossRefGoogle Scholar
  33. Garca-Lopez, D., Picazo, O., Merino, J., Pastor, J.: Polypropylene-clay nanocomposites: effect of compatibilizing agents on clay dispersion. Eur. Polymer J. 39, 945 (2003)CrossRefGoogle Scholar
  34. Giannelis E.P: Polymer layered silicate nanocomposites. Adv. Mater. 8(1), 29–35 (1996)Google Scholar
  35. Grim, R.E., Guven, N.: Bentoniles–Geology, Mineralogy, Properties, and Uses. Elsevier, Amsterdam, p. 256 (1978)Google Scholar
  36. Grim, R.E.: The history of the development of clay mineralogy clays and clay minerals 36(2), 97–101 (1988)CrossRefGoogle Scholar
  37. Grim, R.E., Bradley, W.F.: A unique clay from the Goose Lake, Illinois, area. J. Am. Ceram. Soc. 22, 157–164 (1939)CrossRefGoogle Scholar
  38. Gruner, J.W.: The crystal structure of kaolinite. Z. Kristallogr. 83, 75–88 (1932)Google Scholar
  39. He, H., Ma. Y., Zhu, J., Yuan P., Qing Y.: Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Appl. Clay Sci, 48, 67–72 (2009)Google Scholar
  40. Hendricks, S.B., Teller, E.: X-ray interference in partially ordered layer lattices. J. Phys. Chem. 10, 147–167 (1942)CrossRefGoogle Scholar
  41. Hewitt, D.F.: The origin of bentonite. J. Wash. Acad. Sci. 7, 196–198 (1917)Google Scholar
  42. Heydari, A., Alemzadeh, I., Vossoughi, M.: Functional properties ofbiodegradable corn starch nanocomposites for food packaging applications. Mater. Des. 50, 954–961 (2013)CrossRefGoogle Scholar
  43. Hoffmann, B., Dietrich, C., Thomann, R., Friedrich, C., Mulhaupt, R.: Morphology and rheology of polystyrene nanocomposites based upon organoclay. Macromol. Rapid Commun. 21(1), 57–61 (2000)CrossRefGoogle Scholar
  44. Hofmann, U., Endell, K., Wilm, D.: Kxistalstrucktur und Quellung yon Montmorillonit. Z. Kristallogr. 86(340), 348 (1933)Google Scholar
  45. Houdry, E., Burr, W.F., Per Jr., A.E., Peters Jr., E.W.A.: Catalytic processing by the Houdry process. Natl. Petrol. News 30, 570–580 (1938)Google Scholar
  46. Hunt, P.G., Poach, M.E., Matheny, T.A., Reddy, G.B., Stone, K.C.: Denitrification in marsh-pond-marsh constructed wetlands treating swine wastewater at different loading rates. Soil Sci. Soc. Am. J. 70(2), 487–493 (2006)CrossRefGoogle Scholar
  47. Jasra, R.V., Bajaj, H.C., Mody, H.M.: Clay as a versatile material for catalysts and adsorbents. Bull. Catal. Soc. India 9, 113–121 (1999)Google Scholar
  48. Jeon, H.G., Jung, H.T., Lee, S.W., Hudson, S.D.: Morphology of polymer/silicate nanocomposites-high density polyethylene and a nitrile copolymer. Polym. Bull., 41, 107 (1998)Google Scholar
  49. Jordan Jr., J.W.: Organophilic bentonites. I. Swelling in organic liquids. J. Phys. Colloid Chem. 53, 294–306 (1949)CrossRefGoogle Scholar
  50. Kandola, B.K., Smart, G., Horrocks, A.R., Joseph, P., Zhang, S., Hull, T.R., Cook, A.: Effect of different compatibilisers on nanoclay dispersion, thermal stability, and burning behavior of polypropylene-nanoclay blends. J. Appl. Polym. Sci. 108(2), 816–824 (2008)CrossRefGoogle Scholar
  51. Kashiwagi, T., Harris, R.H., Zhang, X., Briber, R.M., Cipriano, B.H., Raghavan, S.R., Shields, J.R.: Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45(3), 881–891 (2004)CrossRefGoogle Scholar
  52. Katti, K.S., Ambre, A.H., Peterka, N., Katti, D.R.: Use of unnatural amino acids for design of novel organomodified clays as components of nanocomposite biomaterials. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 368(1917), 1963–1980 (2010)CrossRefGoogle Scholar
  53. Ke, Y.C., Stroeve, P.: Polymer-Layered Silicate and Silica Nanocomposites. Elsevier Inc, Netherlands (2005)Google Scholar
  54. Khater, A.E., Al-Mobark, L.H., Aly, A.A., Al-Omran, A.M.: Natural radionuclides in clay deposits: concentration and dose assessment. Radiat. Prot. Dosimetry. 156(3), 321–330 (2013)CrossRefGoogle Scholar
  55. Kim, J., Grate, J.W., Wang, P.: Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61, 1017–1026 (2006)Google Scholar
  56. Knight, W.C.: Bentonite. Eng. Min. J. 66, 491 (1898)Google Scholar
  57. Koo, C.M., Ham, H.T., Kim, S.O., Wang, K.H., Chung, I.J., Kim, D.C., Zin, W.C.: Morphology evolution and anisotropic phase formation of the maleated polyethylene-layered silicate nanocomposites. Macromolecules 35(13), 5116–5122 (2002)CrossRefGoogle Scholar
  58. Kubies, D., Pantoustier, N., Dubois, P., Rulmont, A., Jerome, R.: Controlled ring-opening polymerization of epsilon-caprolactone in the presence of layered silicates and formation of nanocomposites. Macromolecules 35(9), 3318–3320 (2002)CrossRefGoogle Scholar
  59. Kwak, S.Y., Jeong, Y.J., Park, J.S., Choy, J.H.: Bio-LDH nanohybrid for gene therapy. Solid State Ionics. Solid State Ionics 151(1), 229–234 (2002)CrossRefGoogle Scholar
  60. Lan, T., Pinnavaia, T.J.: Clay-reinforced epoxy nanocomposites. Chem. Mater. 6(12), 2216–2219 (1994)CrossRefGoogle Scholar
  61. LeBaron, P.C., Wang, Z., Pinnavaia, J.T.: Polymer-layered silicate nanocomposites: on overview. Appl. Clay Sci. 15, 11 (1999)Google Scholar
  62. Lee, W.F., Chen, Y.C.: Effect of bentonite on the physical properties and drug-release behavior of poly (AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive. J. Appl. Polym. Sci. 91, 2934 (2004)CrossRefGoogle Scholar
  63. Lee, W.F., Fu, Y.T.: Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. J. Appl. Polym. Sci. 89(13), 3652–3660 (2003)CrossRefGoogle Scholar
  64. Lee, S.R., Park, H.M., Lim, H., Kang, T.Y., Li, X.C., Cho, W.J., Ha, C.S.: Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43(8), 2495–2500 (2002)CrossRefGoogle Scholar
  65. Lepoittevin, B., Devalckenaere, M., Pantoustiera, N., M., Alexandrea, Kubies, D., Calberg, C., Jérôme, R., Dubois, P.: Poly(e-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer 43, 4017–4023 (2002)Google Scholar
  66. Li, Z., H.N.: Direct electrochemistry of heme proteins in their layer-by-layer films with clay nanoparticles. J. Electroanal. Chem. 558, 155–165 (2003)Google Scholar
  67. Li, B.X., He, J., Evans, D.G., Duan, X.: Enteric-coated layered double hydroxides as a controlled release drug delivery system. Int. J. Pharm. 287(1–2), 89–95 (2004)CrossRefGoogle Scholar
  68. Lim, S-H., Dasari, A., Wang, G.-T., Yu, Z.-Z., Mai, Y.-W., Yuan, Q.: Impact fracture behaviour of nylon 6-based ternary nanocomposites. Compos. Part B-Eng. 41, 67–75 (2010)Google Scholar
  69. Lin, F.H., Lee, Y.H., Jian, C.H., Wong, J.M., Shieh, M.J., Wang, C.Y.: A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials 23(9), 1981–1987 (2002)CrossRefGoogle Scholar
  70. Liu, L., Qi, Z., Zhu, X.: Studies on nylon 6/clay nanocomposites by melt-intercalation process. J. Appl. Polym. Sci. 71, 1133–1138 (1999)Google Scholar
  71. Liu, Y., Liu, H., Hu N.: Core-shell nanocluster films of hemoglobin and clay nanoparticle: direct electrochemistry and electrocatalysis. Biophys. Chem., 117, 27–37 (2005)Google Scholar
  72. Manias, E., Touny, A., Wu, L., Lu, B., Strawhecker, K., Gilman, J., Chung, T.: Polypropylene/silicate nanocomposites, synthetic routes and materials properties. Polym. Mater. Sci. Eng. 82, 282 (2000)Google Scholar
  73. Manias, E., Touny, A., Wu, L., Strawhecker, K., Lu, B., Chung, T.C.: Polypropylene/Montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 13(10), 3516–3523 (2001)CrossRefGoogle Scholar
  74. Mehmel, M.: Uber die Struktur yon Halloysit und Metahalloysit. Z. Kristallogr. 90, 35–43 (1935)Google Scholar
  75. Messersmith, P.B., Giannelis, E.P.: Synthesis and barrier properties of poly (ε-caprolactone)-layered silicate nanocomposites. J. Polym. Sci. Part A: Polym. Chem. 33, 1047–1057 (1995)CrossRefGoogle Scholar
  76. Min, W., Shi. S., Wang, J., Li, Y., Duan, X.: Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD. Solid State Chem. 177(7), 2534–2541 (2004)Google Scholar
  77. Moelans, D., Cool, P., Baeyens, J., Vansant, E.F.: Using mesoporous silica materials to immobilise biocatalysis-enzymes. Catal. Commun. 6(4), 307–311 (2005)CrossRefGoogle Scholar
  78. Mota, M.F., Silva, J.A., Queiroz, M.B., Laborde, H.M., Rodrigues, M.G.F.: Organophilic clay for oil/water separation process by finite bath tests. Braz. J. Pet. GAS 5(2), 97–107 (2011)CrossRefGoogle Scholar
  79. Nah, C., Han, S.H., Lee, J., Lee, M., Lim, S., Rhee, J.: Intercalation behavior of polyimide/organoclay nanocomposites during thermal imidization. Compos. Part B, 35(2), 125 (2003)Google Scholar
  80. Nakano, M., Usuki, A.: Clay Nanohybrid Materials. In: Kobayashi, S., Müllen, K. (eds.) Encyclopedia of Polymeric Nanomaterials, pp. 1–4. Springer, Berlin (2014)Google Scholar
  81. Natarajan, K., Anu, K.S.: Nanoclay Reinforced polyurethane-epoxy blend: a review. Int. J. Res. Eng. Adv. Technol. 3(1), 78–90 (2015)Google Scholar
  82. Nguyen, Q.T., Baird, D.G.: An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide. Polymer, 48(23), 6923–6933 (2007)Google Scholar
  83. Niwas, S., Gupta, P.K., De Lima, O.A.L.: Nonlinear electrical conductivity response of shaly san14d reservoir. Curr. Sci. 92(5), 612–617 (2007)Google Scholar
  84. Okada, A., Kawasumi, M., Usuki, A., Kojima, Y., Kurauchi, T., Kamigaito, O.: Synthesis and properties of nylon-6/clay hybrids. In: Schaefer, D.W., Mark, J.E. (eds.) Polymer Based Molecular Composites. MRS Symposium Proceedings, vol. 171, pp. 45–50 (1990)Google Scholar
  85. Olad, A., Rashidzadeh, A.: Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites. Prog. Org. Coat. 62(3), 293–298 (2008)CrossRefGoogle Scholar
  86. Patel, H.A., Somani, R.S., Bajaj, H.C., Jasra, R.V.: Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull. Mater. Sci. 29(2), 133–145 (2006)CrossRefGoogle Scholar
  87. Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer 49(15), 3187–3204 (2008)CrossRefGoogle Scholar
  88. Paul, M.A., Alexandre, M., Degée, P., Calberg, C., Jérôme, R., Dubois, P.: Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization. Macromol. Rapid Commun. 24(9), 561–564 (2003)CrossRefGoogle Scholar
  89. Pauling, L.: The structure of micas and related minerals. Proc. Natl. Acad. Sci. Soc. 16, 123–129 (1930)CrossRefGoogle Scholar
  90. Pavlidou, S., Papaspyrides, C.D.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33(12), 1119–1198 (2008)CrossRefGoogle Scholar
  91. Pinnavaia, T.J., Beall, G.W.: Polymer Clay Nanocomposites. Wiley (2001)Google Scholar
  92. Quang, T., Donald, G.: Preparation of Polymer-Clay Nanocomposites and Their Properties. Adv. Polym. Technol. 25(4), 270–285 (2006)CrossRefGoogle Scholar
  93. Ratna, D., Becker, O., Krishnamurthy, R., Simon, G.P., Varley, R.J.: Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate. Polymer 44(24), 7449–7457 (2003)CrossRefGoogle Scholar
  94. Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539 (2003)Google Scholar
  95. Reddy, B.: Advances in diverse industrial applications of nanocomposites (2011)Google Scholar
  96. Reichenbach, H.G., Bayer, J.: Dehydration and rehydration of vermiculites: IV. Arrangement of interlayer components in the 1.43 nm and 1.38 nm hydrates of mgvermiculite. Clay Miner. 29, 327–340 (1994)Google Scholar
  97. Ries, H.: Clays and shales of Virginia, west of the Blue Ridge. Va. GeoL Surv. Bull. 20, 118 (1920)Google Scholar
  98. Ross, C.S., Kerr, P.F.: Optical and tr-ray research on clay minerals (abs.). Am. Mineral. 13, 110 (1928)Google Scholar
  99. Ross, C.S., Kerr., P.F.: The clay minerals and their identity. J. Sediment. Petrol. 1, 35–65 (1930)Google Scholar
  100. Ross, C.S., Kerr., P.F.: The kaolin minerals. U.S. Geol. Surv. Prof. Pap. 165F, 151–175 (1931)Google Scholar
  101. Ross, C.S., Shannon, E.V.: The chemical composition of optical properties of bentonite. J. Wash. Acad. Sci. 15, 467–468 (1925)Google Scholar
  102. Ross, C.S., Shannon, E.V.: Minerals of bentonite and related clays and their physical properties. J. Amer. Cer. Soc. 9, 77–96 (1926)CrossRefGoogle Scholar
  103. Sadegh-Hassani, F., Mohammadi Nafchi, A.: Preparation and characterization of bionanocomposite films based on potato starch/halloysitenanoclay. Int. J. Biol. Macromol. 67, 458–462 (2014)CrossRefGoogle Scholar
  104. Sheng-Ping, Z.: US Patent 0181015 A1 (2005)Google Scholar
  105. Somani, R.S., Shukla, D.B., Bhalala, B.J.: Indian Patent NF No. 572/DEL/2000 (2000)Google Scholar
  106. Stagnaro, S.M., Volzone, C., Huck, L.: Nanoclay as adsorbent: evaluation for removing dyes used in the textile industry. Procedia Mater. Sci. 8, 586–591 (2015)CrossRefGoogle Scholar
  107. Su, S., Jiang, D.D., Wilkie, C.A.: Polybutadiene-modified clay and its nanocomposites. Polym. Degrad. Stab. 84(2), 279–288 (2004)Google Scholar
  108. Subramani S., Lee, J.Y., Kim, J.H., Cheong, I.W.: Crosslinked aqueous dispersion of silylated poly(-urethane urea)/clay nanocomposites. Compos. Sci. Technol. 67, 1561–1573 (2007)Google Scholar
  109. Sur, G.S., Sun, H.L., Lyu, S.G., Mark, J.E.: Synthesis, structure, mechanical properties, and thermal stability of some polysulfone/organoclay nanocomposites. Polymer 42(24), 9783–9789 (2001)CrossRefGoogle Scholar
  110. Suresh, R., Borkar, S., Sawant, V., Shende, V., Dimble, S.: Nanoclay and drug delivery. Int. J. Pharm. Sci. Nanotechnol. 3(2) (2010)Google Scholar
  111. Tatum J. P., Wright, R.C.: US Patent 4752342 (1988)Google Scholar
  112. Tcherbi-Narteh, A., Hosur, M., Triggs, E., Jeelani, S.: Thermal stability and degradation of diglycidyl ether of bisphenol A epoxy modified with different nanoclays exposed to UV radiation. Polym. Degrad. Stab. 98(3), 759–770 (2013)CrossRefGoogle Scholar
  113. Theng, B.K.G.: Formation and Properties of Clay-Polymer Complexes. Elsevier Scientific publishing Company, Amsterdam (1979)Google Scholar
  114. Timmaraju, M.V., Gnanamoorthy, R., Kannan, K.: Influence of imbibed moisture and organoclay on tensile and indentation behavior of polyamide 66/hectorite nanocomposites. Compos. Part B-Eng. 42(4), 66–72 (2011)Google Scholar
  115. Torabi, Z., Mohammadi Nafchi, A.: The effects of SiO2 nanoparticles onmechanical and physicochemical properties of potato starch films. J. Chem. Health Risks 3(1), 33–42 (2013)Google Scholar
  116. Uddin, F.: Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A 39(12), 2804–2814 (2008)CrossRefGoogle Scholar
  117. Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., Kamigaito, O.: Swelling behavior of montmorillonite cation exchanged for V-amino acids by Ecaprolactam. J. Mater. Res. 8(5), 1174–1184 (1993)CrossRefGoogle Scholar
  118. Vaia, R.A., Giannelis, E.P.: Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules, 30, 7990–7999 (1997)Google Scholar
  119. Vaia, R.A., Ishii, H., Giannelis, E.P.: Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5(12), 1694–1696 (1993)Google Scholar
  120. Vaia, R.A., Ishii, H., Giannelis, E.P.: Synthesis and properties of 2-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5(12), 1694–1696 (1993)CrossRefGoogle Scholar
  121. Vamvakaki V., Chaniotakis, N.A.: Immobilization of enzymes into nanocavities for the improvement of biosensor stability. Biosens. Bioelectron. 22, 2650–2655 (2007)Google Scholar
  122. Voon, H., Bhat, R., Easa, A., Liong, M.T., Karim, A.A.: Effect of addition ofhalloysite nanoclay and SiO2 nanoparticles on barrier and mechanicalproperties of bovine gelatin films. Food Bioprocess Technol. 5(5), 1766–1774 (2012)CrossRefGoogle Scholar
  123. Wagener, R., Reisinger, T.J.G.: A rheological method to compare the degree of exfoliation of nanocomposites. Polymer 44(24), 7513–7518 (2003)CrossRefGoogle Scholar
  124. Wang, P.: Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 17, 574–579 (2006)Google Scholar
  125. Wang, D., Wilkie C.A.: A stibonium-modified clay and its polystyrene nanocomposite. Polym. Degrad. Stab. 82, 309–315 (2003)Google Scholar
  126. Wang, Y., Gao, J., Ma, Y.A.: Study on mechanical properties, thermal stability and crystallization behavior of PET/MMT nanocomposites. US Compos. Part B-Eng. 37, 399–407 (2006)Google Scholar
  127. Williams, L.B., Haydel, S.E.: Evaluation of the medicinal use of clay minerals as antibacterial agents. Int. Geol. Rev. 52(7/8), 745–770 (2010)CrossRefGoogle Scholar
  128. Wu, S., Liu, B., Li, S.: Behaviors of enzyme immobilization onto functional microspheres. Int. J. Biol. Macromol. 37, 263–267 (2005)Google Scholar
  129. Yano, K., Usuki, A., Okada, A., Kurauchi, T., Kamigaito, O.: Synthesis and properties of polyimide-clay hybrid. J. Polym. Sci. Part A. Polym. Chem. 31(249), 3–8 (1993)Google Scholar
  130. Yeh, J.M., Chang, K.C.: Polymer/layered silicate nanocomposite anticorrosive coatings. J. Ind. Eng. Chem. 14(3), 275–291 (2008)CrossRefGoogle Scholar
  131. Zeng, Q.H., Yu, A.B., Lu, G.Q., Paul, D.R.: Clay-based polymer nanocomposites: research and commercial development. J. Nanosci. Nanotechnol. 5, 1574 (2005)Google Scholar
  132. Zeng, Q.H., Yu, A.B., Lu, G.Q., Paul, D.R.: Clay-based polymer nanocomposites: research and commercial development. J. Nanosci. Nanotechnol. 5(10), 1574–1592 (2005)CrossRefGoogle Scholar
  133. Zhao, X., Urano, K., Ogasawara, S.: Adsorption of polyethylene glycol from aqueous solution on montmorillonite clays. Colloid Polym. Sci. 267, 899–906 (1989)Google Scholar
  134. Zhou, H.X., Dill, K.A.: Stabilization of proteins in confined spaces. Biochemistry 40(38), 11289–11293 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Mohd Amil Usmani
    • 1
  • Imran Khan
    • 2
    Email author
  • Naheed Ahmad
    • 3
  • A. H. Bhat
    • 4
  • Dhananjay K. Sharma
    • 5
  • Jahangir Ahmad Rather
    • 2
  • Syed Imran Hassan
    • 2
  1. 1.Department of ChemistryEritrea Institute of TechnologyAsmaraEritrea
  2. 2.Department of ChemistryCollege of Science, Sultan Qaboos UniversityMuscatOman
  3. 3.Department of BotanyPatna UniversityPatnaIndia
  4. 4.Department of Fundamental and Applied SciencesUniversiti Teknologi PetronasBandar Seri Iskandar, TronohMalaysia
  5. 5.TEMA-CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations