Advertisement

Bioadsorption of Heavy Metals

  • Aridane G. González
  • Oleg S. Pokrovsky
  • J. Magdalena Santana-Casiano
  • Melchor González-Dávila
Chapter

Abstract

Pollution caused by heavy metals is one of the most serious environmental problems for society. Industrial activities increase the concentration of heavy metals such as Cu(II), Cd(II), Zn(II), Pb(II) and Ni(II) in aquatic systems and mainly in the fields of mechanics, electrics, electronics, tanning, galvanization, oil industries and mining. Biomagnification of these metals occurs through the toxicity of the trophic for humans. As a remedial measure, it is for scientists to find new biosorbents which are able to ameliorate the possible toxic effects of heavy metals in water bodies. Studies of bioadsorption have identified this as a real alternative to wastewater treatment, especially for the removal of heavy metals. This chapter explores (1) the characterization of new biosorbents via surface acid–base titration, where the type of functional groups can be tentatively computed, (2) kinetics of bioadsorption (pseudo-first and second order), (3) bioadsorption as a function of pH and (4) bioadsorption as a function of metal concentration in solution (Langmuir, Freundlich, Sips, Redlich–Peterson, Tóth, Frumkin and Temkin isotherms), where the maximum adsorption capacity can be determined under different experimental conditions. The majority of bioadsorption studies have been carried out at laboratory scale; however, future studies will be conducted at industrial scale as a way to remediate heavy metal pollution in water bodies. Different commercial biosorbents and their characteristics are presented in this chapter.

Notes

Acknowledgement

Aridane G. González thanks the French ‘Agence Nationale de la Recherche’ through the ‘Laboratoire d’Excellence’ LabexMER (ANR-10-LABX-19-01) program, and co-funded by a grant from the French government through the ‘Investissements d’Avenir’ and the Brittany Region. Oleg S. Pokrovsky thanks the support from BIO-GEO-CLIM grant No 14.B25.31.0001. J. Magdalena Satana-Casiano and Melchor González-Dávila thank the Project CTM2014-52342-P given by the Ministerio de Economia y Competitividad from Spain.

References

  1. Abdel-Ghani NT, El-Chaghaby GA (2014) Biosorption for metal ions removal from aqueous solutions: a review of recent studies. Int J Latest Res Sci Technol 3:24–42Google Scholar
  2. Ahmady-Asbchin S, Andres Y, Gérente C, Le Cloirec P (2008) Biosorption of Cu (II) from aqueous solution by Fucus serratus: surface characterization and sorption mechanisms. Biores Technol 99(14):6150–6155CrossRefGoogle Scholar
  3. Aksu Z, Dönmez G (2006) Binary biosorption of cadmium(II) and nickel(II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters. Process Biochem 41(4):860–868CrossRefGoogle Scholar
  4. Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18(12):1501–1507CrossRefGoogle Scholar
  5. Borrok D, Fein JB (2004) Distribution of protons and Cd between bacterial surfaces and dissolved humic substances determined through chemical equilibrium modelling. Geochim Cosmochim Acta 68:3043–3052CrossRefGoogle Scholar
  6. Brassard P, Kramer JR, Collins PV (1990) Binding site analysis using linear programming. Environ Sci Technol 24(2):195–201CrossRefGoogle Scholar
  7. Brierley J (1985) AMT-BIOCLAIM: a new wastewater treatment and metal recovery technology. Fundam Appl biohydrometallurgy:291–304Google Scholar
  8. Brierley JA (1990) Production and application of a Bacillus-based product for use in metals biosorption. Biosorption Heavy Metal:305–312Google Scholar
  9. Bueno BYM, Torem ML, Molina F, De Mesquita LMS (2008) Biosorption of lead (II), chromium (III) and copper (II) by R. opacus: Equilibrium and kinetic studies. Miner Eng 21(1):65–75CrossRefGoogle Scholar
  10. Cazón JP, Bernardelli C, Viera M, Donati E, Guibal E (2012) Zinc and cadmium biosorption by untreated and calcium-treated Macrocystis pyrifera in a batch system. Biores Technol 116:195–203CrossRefGoogle Scholar
  11. Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36(3):299–307PubMedCrossRefGoogle Scholar
  12. Cox JS, Smith DS, Warren LA, Ferris FG (1999) Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environ Sci Technol 33(24):4514–4521CrossRefGoogle Scholar
  13. Crist RH, Martin JR, Crist DR (1999) Interaction of metal ions with acid sites of biosorbents peat moss and vaucheria and model substances alginic and humic acids. Environ Sci Technol 33(13):2252–2256CrossRefGoogle Scholar
  14. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330PubMedCrossRefGoogle Scholar
  15. Davis TA, Volesky B, Vieira R (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34(17):4270–4278CrossRefGoogle Scholar
  16. Drozdova OY, Pokrovsky OS, Lapitskiy SA, Shirokova LS, González AG, Demin VV (2014) Decrease in zinc adsorption onto soil in the presence of EPS-rich and EPS-poor Pseudomonas aureofaciens. J Colloid Interface Sci 435:59–66PubMedCrossRefGoogle Scholar
  17. Erdem M, Ozverdi A (2006) Kinetics and thermodynamics of Cd(II) adsorption onto pyrite and synthetic iron sulphide. Sep Purif Technol 51(3):240–246CrossRefGoogle Scholar
  18. Farhan AM, Al-Dujaili AH, Awwad AM (2013) Equilibrium and kinetic studies of cadmium (II) and lead (II) ions biosorption onto Ficus carcia leaves. Int J Ind Chem 4(1):1–8CrossRefGoogle Scholar
  19. Fein JB, Martin AM, Wightman PG (2001) Metal adsorption onto bacterial surfaces: development of a predictive approach. Geochim Cosmochim Acta 65(23):4267–4273CrossRefGoogle Scholar
  20. Figueira MM, Volesky B, Ciminelli VST, Roddick FA (2000) Biosorption of metals in brown seaweed biomass. Water Res 34(1):196–204CrossRefGoogle Scholar
  21. Fowle DA, Fein JB (2000) Experimental measurements of the reversibility of metal–bacteria adsorption reactions. Chem Geol 168(1):27–36CrossRefGoogle Scholar
  22. Freundlich U (1906) Die adsorption in lusungen. J Phys ChemGoogle Scholar
  23. Gelabert A, Pokrovsky OS, Viers J, Schott J, Boudou A, Feurtet-Mazel A (2006) Interaction between zinc and freshwater and marine diatom species: surface complexation and Zn isotope fractionation. Geochim Cosmochim Acta 70(4):839–857CrossRefGoogle Scholar
  24. Ghaedi M, Hajati S, Karimi F, Barazesh B, Ghezelbash G (2013) Equilibrium, kinetic and isotherm of some metal ion biosorption. J Ind Eng Chem 19(3):987–992CrossRefGoogle Scholar
  25. González-Dávila M (1995) The role of phytoplankton cells on the control of heavy metal concentration in seawater. Mar Chem 48(3):215–236CrossRefGoogle Scholar
  26. González-Dávila M, Santana-Casiano JM, Perez-Pena J, Millero FJ (1995) Binding of Cu (II) to the surface and exudates of the alga Dunaliella tertiolecta in seawater. Environ Sci Technol 29(2):289–301PubMedCrossRefGoogle Scholar
  27. González AG, Jimenez-Villacorta F, Beike AK, Reski R, Adamo P, Pokrovsky OS (2016a) Chemical and structural characterization of copper adsorbed on mosses (Bryophyta). J Hazard Mater 308:343–354PubMedCrossRefGoogle Scholar
  28. González AG, Pérez-Almeida N, Santana-Casiano JM, Millero FJ, González-Dávila M (2016b) Redox interactions of Fe and Cu in seawater. Mar Chem 179:12–22CrossRefGoogle Scholar
  29. González AG, Pokrovsky OS, Beike AK, Reski R, Di Palma A, Adamo P, Giordano S, Fernandez JA (2016c) Metal and proton adsorption capacities of natural and cloned Sphagnum mosses. J Colloid Interface Sci 461:326–334PubMedCrossRefGoogle Scholar
  30. González AG, Pokrovsky OS (2014) Metal adsorption on mosses: Toward a universal adsorption model. J Colloid Interface Sci 415:169–178PubMedCrossRefGoogle Scholar
  31. González AG, Shirokova LS, Pokrovsky OS, Emnova EE, Martinez RE, Santana-Casiano JM, González-Dávila M, Pokrovski GS (2010) Adsorption of copper on Pseudomonas aureofaciens: Protective role of surface exopolysaccharides. J Colloid Interface Sci 350(1):305–314PubMedCrossRefGoogle Scholar
  32. Grchev T, Cvetkovska M, Stafilov T, Schultze JW (1991) Adsorption of polyacrylamide on gold and iron from acidic aqueous solutions. Electrochim Acta 36(8):1315–1323CrossRefGoogle Scholar
  33. Gupta SS, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Coll Interface Sci 162(1):39–58CrossRefGoogle Scholar
  34. Gupta VK, Rastogi A (2008) Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153(1):759–766PubMedCrossRefGoogle Scholar
  35. Hashim MA, Chu KH (2004) Biosorption of cadmium by brown, green, and red seaweeds. Chem Eng J 97(2):249–255CrossRefGoogle Scholar
  36. He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Biores Technol 160:67–78CrossRefGoogle Scholar
  37. Herrero R, Lodeiro P, García-Casal LJ, Vilariño T, Rey-Castro C, David C, Rodríguez P (2011) Full description of copper uptake by algal biomass combining an equilibrium NICA model with a kinetic intraparticle diffusion driving force approach. Biores Technol 102(3):2990–2997CrossRefGoogle Scholar
  38. Ho YS, Ng JCY, McKay G (2000) Kinetics of pollutant sorption by biosorbents: review. Sep Purif Rev 29(2):189–232CrossRefGoogle Scholar
  39. Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43(11):1001–1009PubMedCrossRefGoogle Scholar
  40. Ibrahim WM (2011) Biosorption of heavy metal ions from aqueous solution by red macroalgae. J Hazard Mater 192(3):1827–1835PubMedCrossRefGoogle Scholar
  41. Jalali R, Ghafourian H, Asef Y, Davarpanah SJ, Sepehr S (2002) Removal and recovery of lead using nonliving biomass of marine algae. J Hazard Mater 92(3):253–262PubMedCrossRefGoogle Scholar
  42. Jara A, Assunção P, Portillo E, Freijanes K, Mendoza H (2016) Evolution of microalgal biotechnology: a survey of the European patent office database. J Appl Phycol:1–14Google Scholar
  43. Jeffers TH, Bennett PG, Corwin RR (1993) Biosorption of metal contaminants using immobilized biomass: field studies. Report of investigations/1993. Salt Lake City Research Center, Bureau of Mines, Salt Lake City, US (United States).Google Scholar
  44. Karthikeyan S, Balasubramanian R, Iyer CSP (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu (II) from aqueous solutions. Biores Technol 98(2):452–455CrossRefGoogle Scholar
  45. Kiran I, Akar T, Ozcan AS, Ozcan A, Tunali S (2006) Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions. Biochem Eng J 31(3):197–203CrossRefGoogle Scholar
  46. Kleinübing SJ, Da Silva EA, Da Silva MGC, Guibal E (2011) Equilibrium of Cu (II) and Ni (II) biosorption by marine alga Sargassum filipendula in a dynamic system: competitiveness and selectivity. Biores Technol 102(7):4610–4617CrossRefGoogle Scholar
  47. Kumar KV, Sivanesan S, Ramamurthi V (2005) Adsorption of malachite green onto Pithophora sp., a fresh water algae: equilibrium and kinetic modelling. Process Biochem 40(8):2865–2872CrossRefGoogle Scholar
  48. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403CrossRefGoogle Scholar
  49. Lee Y-C, Chang S-P (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Biores Technol 102(9):5297–5304CrossRefGoogle Scholar
  50. Lodeiro P, Cordero B, Barriada JL, Herrero R, De Vicente MES (2005) Biosorption of cadmium by biomass of brown marine macroalgae. Biores Technol 96(16):1796–1803CrossRefGoogle Scholar
  51. Luna AS, Costa ALH, da Costa ACA, Henriques CA (2010) Competitive biosorption of cadmium (II) and zinc (II) ions from binary systems by Sargassum filipendula. Biores Technol 101(14):5104–5111CrossRefGoogle Scholar
  52. Martinez RE, Ferris FG (2001) Chemical equilibrium modeling techniques for the analysis of high-resolution bacterial metal sorption data. J Colloid Interface Sci 243(1):73–80CrossRefGoogle Scholar
  53. Martinez RE, Pedersen K, Ferris FG (2004) Cadmium complexation by bacteriogenic iron oxides from a subterranean environment. J Colloid Interface Sci 275(1):82–89PubMedCrossRefGoogle Scholar
  54. Martinez RE, Pokrovsky OS, Schott J, Oelkers EH (2008) Surface charge and zeta-potential of metabolically active and dead cyanobacteria. J Colloid Interface Sci 323(2):317–325PubMedCrossRefGoogle Scholar
  55. Martinez RE, Smith DS, Kulczycki E, Ferris FG (2002) Determination of intrinsic bacterial surface acidity constants using a donnan shell model and a continuous pKa distribution method. J Colloid Interface Sci 253(1):130–139PubMedCrossRefGoogle Scholar
  56. Mata YN, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2008) Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus. J Hazard Mater 158(2):316–323PubMedCrossRefGoogle Scholar
  57. Matheickal JT, Yu Q (1999) Biosorption of lead (II) and copper (II) from aqueous solutions by pre-treated biomass of Australian marine algae. Biores Technol 69(3):223–229CrossRefGoogle Scholar
  58. Meena AK, Kadirvelu K, Mishraa GK, Rajagopal C, Nagar PN (2008) Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J Hazard Mater 150(3):619–625PubMedCrossRefGoogle Scholar
  59. Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process—a review. Appl Biochem Biotechnol 170(6):1389–1416PubMedPubMedCentralCrossRefGoogle Scholar
  60. Millero FJ, Woosley R, DiTrolio B, Waters J (2009) Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22:72–85CrossRefGoogle Scholar
  61. Naja GM, Volesky B (2010) Treatment of metal-bearing effluents: removal and recovery. Handb Heavy Metals Environ:247–291Google Scholar
  62. Ofomaja AE, Ho Y-S (2007) Effect of pH on cadmium biosorption by coconut copra meal. J Hazard Mater 139(2):356–362PubMedCrossRefGoogle Scholar
  63. Padmavathy V (2008) Biosorption of nickel (II) ions by baker’s yeast: kinetic, thermodynamic and desorption studies. Biores Technol 99(8):3100–3109CrossRefGoogle Scholar
  64. Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z (2010) Biosorption of nickel (II) from aqueous solution by brown algae: equilibrium, dynamic and thermodynamic studies. J Hazard Mater 175(1):304–310PubMedCrossRefGoogle Scholar
  65. Pan J-H, Liu R-X, Tang H-X (2007) Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. J Environ Sci 19(4):403–408CrossRefGoogle Scholar
  66. Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba TF (2006) Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Biores Technol 97(18):2321–2329CrossRefGoogle Scholar
  67. Pokrovsky OS, Martinez RE, Golubev SV, Kompantseva EI, Shirokova LS (2008a) Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: a surface speciation approach. Appl Geochem 23(9):2574–2588CrossRefGoogle Scholar
  68. Pokrovsky OS, Viers J, Emnova EE, Kompantseva EI, Freydier R (2008b) Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy (hydr) oxides: possible structural control. Geochim Cosmochim Acta 72(7):1742–1757CrossRefGoogle Scholar
  69. Pokrovsky OS, Pokrovski GS, Shirokova LS, Gonzalez AG, Emnova EE, Feurtet-Mazel A (2012) Chemical and structural status of copper associated with oxygenic and anoxygenic phototrophs and heterotrophs: possible evolutionary consequences. Geobiology 10:130–149PubMedCrossRefGoogle Scholar
  70. Rajfur M, Kłos A, Wacławek M (2012) Sorption of copper (II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry 87:65–70PubMedCrossRefGoogle Scholar
  71. Rathinam A, Maharshi B, Janardhanan SK, Jonnalagadda RR, Nair BU (2010) Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: a kinetic and thermodynamic study. Biores Technol 101(5):1466–1470CrossRefGoogle Scholar
  72. Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63(6):1024CrossRefGoogle Scholar
  73. Romera E, González F, Ballester A, Blázquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Biores Technol 98(17):3344–3353CrossRefGoogle Scholar
  74. Rubín E, Rodríguez P, Herrero R, de Vicente S, Manuel E (2006) Biosorption of phenolic compounds by the brown alga Sargassum muticum. J Chem Technol Biotechnol 81(7):1093–1099CrossRefGoogle Scholar
  75. Santana-Casiano JM, Gonzalez-Davila M, Perez-Peña J, Millero FJ (1995) Pb2+ interactions with the marine phytoplankton Dunaliella tertiolecta. Mar Chem 48(2):115–129CrossRefGoogle Scholar
  76. Sarı A, Tuzen M (2008) Biosorption of Pb (II) and Cd (II) from aqueous solution using green alga (Ulva lactuca) biomass. J Hazard Mater 152(1):302–308PubMedCrossRefGoogle Scholar
  77. Sheng PX, Ting Y-P, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275(1):131–141PubMedCrossRefGoogle Scholar
  78. Singh A, Kumar D, Gaur JP (2007) Copper (II) and lead (II) sorption from aqueous solution by non-living Spirogyra neglecta. Biores Technol 98(18):3622–3629CrossRefGoogle Scholar
  79. Sips R (1948) Combined form of Langmuir and Freundlich equations. J Chem Phys 16(5):490–495CrossRefGoogle Scholar
  80. Smith DS, Ferris FG (2001) Proton binding by hydrous ferric oxide and aluminum oxide surfaces interpreted using fully optimized continuous pKa spectra. Environ Sci Technol 35(23):4637–4642PubMedCrossRefGoogle Scholar
  81. Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. WileyGoogle Scholar
  82. Temkin MJ, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochimica URSS 12(1):217–222Google Scholar
  83. Toth J (1971) State equations of the solid-gas interface layers. Acta Chim (Academiae Scientiarum) Hung 69(3):311–328Google Scholar
  84. Tsezos M, Remoudaki E, Angelatou V (1997) Biosorption sites of selected metals using electron microscopy. Comp Biochem Physiol A Physiol 118(3):481–487CrossRefGoogle Scholar
  85. Tuzen M, Sarı A (2010) Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158(2):200–206CrossRefGoogle Scholar
  86. Ueshima M, Ginn BR, Haack EA, Szymanowski JES, Fein JB (2008) Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances. Geochim Cosmochim Acta 72(24):5885–5895CrossRefGoogle Scholar
  87. Vieira RHSF, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24PubMedGoogle Scholar
  88. Vilar VJP, Botelho CMS, Boaventura RAR (2008) Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium. Biores Technol 99(4):750–762CrossRefGoogle Scholar
  89. Volesky B (ed.) (1990) Biosorption and biosorbents in biosorption of heavy metals. CRC, Boca RatonGoogle Scholar
  90. Volesky B (2003) Biosorption process simulation tools. Hydrometallurgy 71(1):179–190CrossRefGoogle Scholar
  91. Volesky B, Schiewer S, Flickinger MC, Drew SW (1999) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation.Google Scholar
  92. Won SW, Kim H-J, Choi S-H, Chung B-W, Kim K-J, Yun Y-S (2006) Performance, kinetics and equilibrium in biosorption of anionic dye reactive black 5 by the waste biomass of Corynebacterium glutamicum as a low-cost biosorbent. Chem Eng J 121(1):37–43CrossRefGoogle Scholar
  93. Xu H, Tay JH, Foo SK, Yang SF, Liu Y (2004) Removal of dissolved copper(II) and zinc(II) by aerobic granular sludge. Water Sci Technol 50(9):155–160PubMedGoogle Scholar
  94. Yee N, Fein J (2001) Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim Cosmochim Acta 65(13):2037–2042CrossRefGoogle Scholar
  95. Zakhama S, Dhaouadi H, M’henni F (2011) Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae. Bioresour Technol 102 (2):786–796Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Aridane G. González
    • 1
    • 2
    • 5
  • Oleg S. Pokrovsky
    • 3
    • 4
  • J. Magdalena Santana-Casiano
    • 5
  • Melchor González-Dávila
    • 5
  1. 1.Université de Bretagne Occidentale, IUEMBrestFrance
  2. 2.LEMAR-UMR 6539, CNRS-UBO-IRD-IFREMER, Place Nicolas CopernicPlouzanéFrance
  3. 3.GET (Géosciences Environnement Toulouse), UMR 5563 CNRSToulouseFrance
  4. 4.BIO-GEO-CLIM LaboratoryTomsk State UniversityTomskRussia
  5. 5.Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations