Dynamic Modeling of Floating Offshore Airborne Wind Energy Converters

  • Antonello Cherubini
  • Giacomo Moretti
  • Marco Fontana
Part of the Green Energy and Technology book series (GREEN)


Airborne wind energy converters represent a promising new technology that aims at providing low cost electricity by exploiting airborne systems to harvest energy from high-altitude winds. These plants are interesting for their potential high power density, i.e. ratio between nominal power and weight of required constructions, that makes it possible to forecast extremely low levelized cost for the produced electricity. However, installations of airborne wind energy converters in inland areas might be limited by the required free airspace and by safety problems. For these reasons, marine installations are envisaged, with special interest on the case of floating platforms in deep water locations, that are the most abundantly available. In order to properly address the problem of design and verification of such a kind of system, models that are able to describe the dynamic response of floating platforms to combined kite forces and wave loads have to be developed. This chapter presents a simplified 6 degree-of-freedom model, which couples the linear hydrodynamics of the floating platform with the aerodynamics of the airborne system. A case study is also introduced showing how the dynamic response of the floating platform can affect the performances of the system introducing irregularities in the power output.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is carried out with the financial support of Kitegen Research Srl and Scuola Superiore Sant’Anna.


  1. 1.
    Alves, M.: Numerical simulation of the dynamics of point absorber wave energy converters using frequency and time domain approaches. Ph.D. Thesis, University of Lisbon, 2012Google Scholar
  2. 2.
    Archer, C. L.: An Introduction to Meteorology for Airborne Wind Energy. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 5, pp. 81–94. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_5
  3. 3.
    Baayen, J. H., Ockels, W. J.: Tracking control with adaption of kites. IET Control Theory and Applications 6(2), 182–191 (2012).  https://doi.org/10.1049/iet-cta.2011.0037
  4. 4.
    Breukels, J., Ockels, W. J.: Analysis of complex inflatable structures using a multi-body dynamics approach. AIAA Paper 2008-2284. In: Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL, USA, 7–10 Apr 2008.  https://doi.org/10.2514/6.2008-2284
  5. 5.
    Canale, M., Fagiano, L., Ippolito, M., Milanese, M.: Control of tethered airfoils for a new class of wind energy generator. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 4020–4026, San Diego, CA, USA (2006).  https://doi.org/10.1109/CDC.2006.376775
  6. 6.
    Carter, D. J. T.: Estimation of wave spectra from wave height and period. Report 135, 1982. http://eprints.soton.ac.uk/14556/
  7. 7.
    Castro-Santos, L., González, S. F., Diaz-Casas, V.: Mooring for floating offshore renewable energy platforms classification. In: International Conference on Renewable Energies and Power quality (ICREPQ’13), Bilbao, Spain, 20–22 Mar 2013. http://www.icrepq.com/icrepq’13/277-castro.pdf
  8. 8.
    Cerveira, F., Fonseca, N., Pascoal, R.: Mooring system influence on the efficiency of wave energy converters. International Journal of Marine Energy 3–4, 65–81 (2013).  https://doi.org/10.1016/j.ijome.2013.11.006
  9. 9.
    Cherubini, A., Fontana, M.: Modelling and Design of Off-Shore Floating Platform for High Altitude Wind Energy Converters. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 42, Delft, The Netherlands, 15–16 June 2015.  https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/d16d2d1661af47e88f6e13fb8255e2341d
  10. 10.
    Cherubini, A., Moretti, G., Fontana, M.: Offshore AWEC Simulator. http://www.percro.org/AWE (2015). Accessed 1 Feb 2016
  11. 11.
    Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015).  https://doi.org/10.1016/j.rser.2015.07.053
  12. 12.
    Cherubini, A., Vertechy, R., Fontana, M.: Simplified model of offshore Airborne Wind Energy Converters. Renewable Energy 88, 465–473 (2016).  https://doi.org/10.1016/j.renene.2015.11.063
  13. 13.
    Coleman, J., Ahmad, H., Pican, E., Toal, D.: Modelling of a synchronous offshore pumping mode airborne wind energy farm. Energy 71, 569–578 (2014).  https://doi.org/10.1016/j.energy.2014.04.110
  14. 14.
    Cummins, W. E.: The impulse response function and ship motions. Report 1661, Department of the Navy David Taylor Model Basin, Oct 1962. http://hdl.handle.net/1721.3/49049
  15. 15.
    Day, A. H., Babarit, A., Fontaine, A., He, Y.-P., Kraskowski, M., Murai, M., Penesis, I., Salvatore, F., Shin, H.-K.: Hydrodynamic modelling of marine renewable energy devices: A state of the art review. Ocean Engineering 108, 46–69 (2015).  https://doi.org/10.1016/j.oceaneng.2015.05.036
  16. 16.
    Diehl, M.: Airborne Wind Energy: Basic Concepts and Physical Foundations. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 1, pp. 3–22. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_1
  17. 17.
    Erhard, M., Horn, G., Diehl, M.: A quaternion-based model for optimal control of the Sky-Sails airborne wind energy system. ZAMM – Journal of Applied Mathematics and Mechanics (2016).  https://doi.org/10.1002/zamm.201500180. arXiv:1508.05494 [math.OC]
  18. 18.
    Erhard, M., Strauch, H.: Theory and Experimental Validation of a Simple Comprehensible Model of Tethered Kite Dynamics Used for Controller Design. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 8, pp. 141–165. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_8
  19. 19.
    Erhard, M., Strauch, H.: Control of Towing Kites for Seagoing Vessels. IEEE Transactions on Control Systems Technology 21(5), 1629–1640 (2013).  https://doi.org/10.1109/TCST.2012.2221093
  20. 20.
    Erhard, M., Strauch, H.: Flight control of tethered kites in autonomous pumping cycles for airborne wind energy. Control Engineering Practice 40, 13–26 (2015).  https://doi.org/10.1016/j.conengprac.2015.03.001
  21. 21.
    Fagiano, L., Milanese, M., Piga, D.: Optimization of airborne wind energy generators. International Journal of Robust and Nonlinear Control 22(18), 2055–2083 (2011).  https://doi.org/10.1002/rnc.1808
  22. 22.
    Fechner, U., Vlugt, R. van der, Schreuder, E., Schmehl, R.: Dynamic Model of a Pumping Kite Power System. Renewable Energy (2015).  https://doi.org/10.1016/j.renene.2015.04.028. arXiv:1406.6218 [cs.SY]
  23. 23.
    Henderson, A. R., Morgan, C., Smith, B., Sørensen, H. C., Barthelmie, R. J., Boesmans, B.: OffshoreWind Energy in Europe– A Review of the State-of-the-Art.Wind Energy 6(1), 35–52 (2003).  https://doi.org/10.1002/we.82
  24. 24.
    Henriques, J. C. C., Chong, J. C., Falcão, A. F. O., Gomes, R. P. F.: Latching control of a floating oscillating water column wave energy converter in irregular waves. Paper No. OMAE2014-23260. In: Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, CA, USA, 8–13 June 2014.  https://doi.org/10.1115/OMAE2014-23260
  25. 25.
    Horn, G., Gros, S., Diehl, M.: Numerical Trajectory Optimization for Airborne Wind Energy Systems Described by High Fidelity Aircraft Models. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 11, pp. 205–218. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_11
  26. 26.
    Jehle, C., Schmehl, R.: Applied Tracking Control for Kite Power Systems. AIAA Journal of Guidance, Control, and Dynamics 37(4), 1211–1222 (2014).  https://doi.org/10.2514/1.62380
  27. 27.
    Johanning, L., Smith, G. H., Wolfram, J.: Mooring design approach for wave energy converters. Proceedings of the Institution of Mechanical Engineers. Part M, Journal of engineering for the maritime environment 220(4), 159–174 (2006).  https://doi.org/10.1243/14750902JEME54
  28. 28.
    Jonkman, J. M.: Dynamics of offshore floating wind turbines—model development and verification. Wind Energy 12(5), 459–492 (2009).  https://doi.org/10.1002/we.347
  29. 29.
    Jonkman, J. M., Matha, D.: Dynamics of offshore floating wind turbines–analysis of three concepts. Wind Energy 14(4), 557–569 (2011).  https://doi.org/10.1002/we.442
  30. 30.
    Jonkman, J. M.: Dynamics modeling and loads analysis of an offshore floating wind turbine. Technical Report NREL/TP-500-41958, National Renewable Energy Laboratory, Golden, CO, USA, Nov 2007Google Scholar
  31. 31.
    Kwan, C. T., Bruen, F. J.: Mooring line dynamics: comparison of time domain, frequency domain, and quasi-static analyses. In: Proceedings of the 23rd Annual Offshore Technology Conference, Houston, TX, USA, 6–9 May 1991.  https://doi.org/10.4043/6657-MS
  32. 32.
    Lee, K. H.: Responses of floating wind turbines to wind and wave excitation. Ph.D. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33564
  33. 33.
    Loukogeorgaki, E., Angelides, D. C.: Stiffness of mooring lines and performance of floating breakwater in three dimensions. Applied Ocean Research 27(4), 187–208 (2005).  https://doi.org/10.1016/j.apor.2005.12.002
  34. 34.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).  https://doi.org/10.2514/3.48021
  35. 35.
    Matha, D., Schlipf, M., Cordle, A., Pereira, R., Jonkman, J.: Challenges in simulation of aerodynamics, hydrodynamics, and mooring-line dynamics of floating offshore wind turbines. CP-5000-50544. In: Proceedings of the 21st Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011. http://www.nrel.gov/docs/fy12osti/50544.pdf
  36. 36.
    McCormick, M. E.: Ocean engineering wave mechanics. John Wiley & Sons, Chichester (1973)Google Scholar
  37. 37.
    Musial, W., Butterfield, S., Boone, A.: Feasibility of floating platform systems for wind turbines. AIAA Paper 2004-1007. In: Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 Jan 2004.  https://doi.org/10.2514/6.2004-1007
  38. 38.
    Musial, W., Ram, B.: Large-scale offshore wind power in the United States: Assessment of opportunities and barriers. NREL/TP-500-40745, National Renewable Energy Laboratory, Golden, CO, USA, Sept 2010. http://www.nrel.gov/wind/pdfs/40745.pdf
  39. 39.
    Newman, J. N., Lee, C.-H.: Boundary-element methods in offshore structure analysis. Journal of Offshore Mechanics and Arctic Engineering 124(2), 81–89 (2002).  https://doi.org/10.1115/1.1464561
  40. 40.
    Nossen, J., Grue, J., Palm, E.: Wave forces on three-dimensional floating bodies with small forward speed. Journal of Fluid Mechanics 227, 135–160 (1991). doi: 10/d9kr7dGoogle Scholar
  41. 41.
    Qiao, D., Ou, J., Wu, F.: Design selection analysis for mooring positioning system of deepwater semi-submersible platform. In: Proceedings of the 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece, 17–22 June 2012. https://www.onepetro.org/conference-paper/ISOPE-I-12-012
  42. 42.
    Roddier, D., Cermelli, C., Aubault, A., Weinstein, A.: WindFloat: A floating foundation for offshore wind turbines. Journal of Renewable and Sustainable Energy 2(3), 033104 (2010).  https://doi.org/10.1063/1.3435339
  43. 43.
    Ruehl, K., Bull, D.: Wave energy development roadmap: design to commercialization. In: Proceedings of the 2012 Oceans, Hampton Roads, VA, USA, 14–19 Oct 2012.  https://doi.org/10.1109/OCEANS.2012.6404795
  44. 44.
    Ruiterkamp, R., Sieberling, S.: Description and Preliminary Test Results of a Six Degrees of Freedom Rigid Wing Pumping System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 26, pp. 443–458. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_26
  45. 45.
    Vander Lind, D.: Analysis and Flight Test Validation of High Performance Airborne Wind Turbines. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 28, pp. 473–490. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_28
  46. 46.
    Vlugt, R. van der, Peschel, J., Schmehl, R.: Design and Experimental Characterization of a Pumping Kite Power System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 23, pp. 403–425. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_23
  47. 47.
    Williams, P., Lansdorp, B., Ockels, W. J.: Nonlinear Control and Estimation of a Tethered Kite in Changing Wind Conditions. AIAA Journal of Guidance, Control and Dynamics 31(3) (2008).  https://doi.org/10.2514/1.31604
  48. 48.
    Wolsink, M.: Wind power implementation: The nature of public attitudes: Equity and fairness instead of ’backyard motives’. Renewable and Sustainable Energy Reviews 11(6), 1188–1207 (2007).  https://doi.org/10.1016/j.rser.2005.10.005
  49. 49.
    Yamamoto, M., Morooka, C. K., Ueno, S.: Dynamic behavior of a semi-submersible platform coupled with drilling riser during re-entry operation in ultra-deep water. In: Proceedings of the ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering, pp. 239–248, American Society of Mechanical Engineers, San Diego, CA, USA, 10–15 June 2007.  https://doi.org/10.1115/OMAE2007-29221
  50. 50.
    Yu, Z., Falnes, J.: State-space modelling of a vertical cylinder in heave. Applied Ocean Research 17(5), 265–275 (1995).  https://doi.org/10.1016/0141-1187(96)00002-8

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Antonello Cherubini
    • 1
  • Giacomo Moretti
    • 1
  • Marco Fontana
    • 1
  1. 1.PERCRO SEESScuola Superiore Sant’AnnaPisaItaly

Personalised recommendations