Analytical Tether Model for Static Kite Flight

  • Nedeleg BigiEmail author
  • Alain Nême
  • Kostia Roncin
  • Jean-Baptiste Leroux
  • Guilhem Bles
  • Christian Jochum
  • Yves Parlier
Part of the Green Energy and Technology book series (GREEN)


The use of traction kites as auxiliary propulsion systems for ships appears to be a high-potential alternative for fuel saving. To study such a system a tether model based on the catenary curve has been developed. This model allows calculating static flight positions of the kite on the edge of the wind window. The effect of the wind velocity gradient is taken into account for the evaluation of the aerodynamic forces acting on kite and tether. A closed-form expression is derived for the minimum wind velocity required for static flight of the kite. Results are presented for a kite with a surface area of 320 m2 and a mass of 300 kg attached to a tether with a diameter of 55 mm and a mass per unit length of 1:20 kgm−1. The minimum wind speed measured at 10 m altitude to launch the kite is found to be around 4:5 m/s. After the launching phase, we show that the optimal tether length for static flight is 128:4 m with a minimum wind speed of 4:06 m/s. The presented approach shows an error up to 9% for a zero-mass kite model with a straight massless tether regarding the maximal propulsion force estimation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argatov, I., Rautakorpi, P., Silvennoinen, R.: Apparent wind load effects on the tether of a kite power generator. Journal ofWind Engineering and Industrial Aerodynamics 99(5), 1079–1088 (2011).
  2. 2.
    Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 34(6), 1525–1532 (2009).
  3. 3.
    Bigi, N., Nême, A., Roncin, K., Leroux, J.-B., Bles, G., Jochum, C., Parlier, Y.: A Quasi-Analytical 3D Kite Tether Model. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 43, Delft, The Netherlands, 15–16 June 2015. Presentation video recording available from:
  4. 4.
    Breukels, J.: Kite launch using an aerostat. Technical Report, Delft University of Technology, 21 Aug 2007.
  5. 5.
    Dadd, G. M.: Kite dynamics for ship propulsion. Ph.D. Thesis, University of Southampton, 2013.
  6. 6.
    Dadd, G. M., Hudson, D. A., Shenoi, R. A.: Determination of kite forces using threedimensional flight trajectories for ship propulsion. Renewable Energy 36(10), 2667–2678 (2011).
  7. 7.
    Duckworth, R.: The application of elevated sails (kites) for fuel saving auxiliary propulsion of commercial vessels. Journal of Wind Engineering and Industrial Aerodynamics 20(1–3), 297–315 (1985).
  8. 8.
    Fer, F.: Thermodynamique macroscopique, vol. 2. Gordon & Breach (1971)Google Scholar
  9. 9.
    Fitzgerald, J. E.: A tensorial Hencky measure of strain and strain rate for finite deformations. Journal of Applied Physics 51(10), 5111–5115 (1980).
  10. 10.
    Hobbs, S. E.: A Quantitative Study of Kite Performance in Natural Wind with Application to Kite Anemometry. Ph.D. Thesis, Cranfield University, 1986.
  11. 11.
    Hoerner, S. F.: Fluid-Dynamic Drag. Bricktown, Brick Town, NJ, USA (1965)Google Scholar
  12. 12.
    International Towing Tank Conference: ITTC Symbols and Terminology List Version 2014, Sept 2014.
  13. 13.
    Irvine, H. M., Sinclair, G. B.: The suspended elastic cable under the action of concentrated vertical loads. International Journal of Solids and Structures 12(4), 309–317 (1976).
  14. 14.
    Irvine, H. M.: Cable structures. MIT Press, London (1981)Google Scholar
  15. 15.
    Jung, T. P.: Wind Tunnel Study of Drag of Various Rope Designs. AIAA Paper 2009-3608. In: Proceedings of the 27th AIAA Applied Aerodynamics Conference, San Antonio, TX, USA, 22–25 June 2009.
  16. 16.
    Leclère, G., Nême, A., Cognard, J., Berger, F.: Rupture simulation of 3D elastoplastic structures under dynamic loading. Computers & Structures 82(23–26), 2049–2059 (2004).
  17. 17.
    Leloup, R., Roncin, K., Behrel, M., Bles, G., Leroux, J.-B., Jochum, C., Parlier, Y.: A continuous and analytical modeling for kites as auxiliary propulsion devoted to merchant ships, including fuel saving estimation. Renewable Energy 86, 483–496 (2016).
  18. 18.
    Lewis, W. J.: Tension Structures: Form and Behaviour. Thomas Telford, London (2003)Google Scholar
  19. 19.
    Naaijen, P., Koster, V.: Performance of auxiliary wind propulsion for merchant ships using a kite. In: Proceedings of the 2nd International Conference on Marine Research and Transportation, pp. 45–53, Naples, Italy, 28–30 June 2007.
  20. 20.
    Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures 19(4), 389–447 (2004).
  21. 21.
    Terink, E. J., Breukels, J., Schmehl, R., Ockels, W. J.: Flight Dynamics and Stability of a Tethered Inflatable Kiteplane. AIAA Journal of Aircraft 48(2), 503–513 (2011).
  22. 22.
    Varma, S. K., Goela, J. S.: Effect of wind loading on the design of a kite tether. Journal of Energy 6(5), 342–343 (1982).
  23. 23.
    Wellicome, J. F.: Some comments on the relative merits of various wind propulsion devices. Journal of Wind Engineering and Industrial Aerodynamics 20(1–3), 111–142 (1985).
  24. 24.
    Williams, P., Lansdorp, B., Ockels, W. J.: Modeling and Control of a Kite on a Variable Length Flexible Inelastic Tether. AIAA Paper 2007-6705. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head, SC, USA, 20–23 Aug 2007.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nedeleg Bigi
    • 1
    Email author
  • Alain Nême
    • 1
  • Kostia Roncin
    • 1
  • Jean-Baptiste Leroux
    • 1
  • Guilhem Bles
    • 1
  • Christian Jochum
    • 1
  • Yves Parlier
    • 2
  1. 1.FRE CNRS 3744, IRDLENSTA BretagneBrestFrance
  2. 2.beyond the seaLa Teste de BuchFrance

Personalised recommendations