Airborne Wind Energy Conversion Using a Rotating Reel System

  • Pierre BenhaïemEmail author
  • Roland Schmehl
Part of the Green Energy and Technology book series (GREEN)


The study proposes a new airborne wind energy system based on the carousel concept. It comprises a rotary ring kite and a ground-based rotating reel conversion system. The moment generated by the ring kite is transferred by several peripheral tethers that connect to winch modules that are mounted on the ground rotor. A generator is coupled to this rotor for direct electricity generation. Because the ring kite is inclined with respect to the ground-rotor the length of the peripheral tethers has to be adjusted continuously during operation. The proposed system is designed to minimize the used land and space. This first study describes the fundamental working principles, results of a small-scale experimental test, a kinematic analysis of steady-state operation of the system and a power transmission analysis. Design choices for the ring kite are discussed, a strategy for launching and landing and methods for passive and active control are described.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Antonello Cherubini for his help with the mechanical analysis; Antoine Delon, for the geometrical and mathematical representations of the reference axis and kinematics; Ben Lerner for the reorganization of some elements; David Murray for proofreading.


  1. 1.
    Ahrens, U.: Wind-operated power generator. US Patent 8,096,763, Jan 2012Google Scholar
  2. 2.
    Ahrens, U., Pieper, B., Töpfer, C.: Combining Kites and Rail Technology into a Traction-Based Airborne Wind Energy Plant. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 25, pp. 437–441. Springer, Berlin Heidelberg (2013).
  3. 3.
    Archer, C. L., Caldeira, K.: Global Assessment of High-Altitude Wind Power. Energies 2(2), 307–319 (2009).
  4. 4.
    Argatov, I., Silvennoinen, R.: Asymptotic modeling of unconstrained control of a tethered power kite moving along a given closed-loop spherical trajectory. Journal of Engineering Mathematics 72(1), 187–203 (2012).
  5. 5.
    Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 34(6), 1525–1532 (2009).
  6. 6.
    Argatov, I., Silvennoinen, R.: Energy conversion efficiency of the pumping kite wind generator. Renewable Energy 35(5), 1052–1060 (2010).
  7. 7.
    Beaujean, J. M. E.: 500MW Wind Turbines. Windtech International, 11 Nov 2011. Accessed 21 July 2016
  8. 8.
    Benhaïem, P.: Eolienne aéroportée rotative. French Patent 3034473, Oct 2016Google Scholar
  9. 9.
    Benhaïem, P.: Land and Space used. In: Lütsch, G. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2013, p. 59, Berlin, Germany, 10–11 Sept 2013.
  10. 10.
    Benhaïem, P.: Rotating Reeling. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 100, Delft, The Netherlands, 15–16 June 2015. Poster available from:
  11. 11.
    Breuer, J. C. M., Luchsinger, R. H.: Inflatable kites using the concept of Tensairity. Aerospace Science and Technology 14(8), 557–563 (2010).
  12. 12.
    Breukels, J., Schmehl, R., Ockels, W.: Aeroelastic Simulation of Flexible Membrane Wings based on Multibody System Dynamics. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 16, pp. 287–305. Springer, Berlin Heidelberg (2013).
  13. 13.
    Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E.:Wind Energy Handbook. 2nd ed. JohnWiley & Sons, Ltd, Chichester (2011).
  14. 14.
    Canale, M., Fagiano, L., Milanese, M.: Power kites for wind energy generation - fast predictive control of tethered airfoils. IEEE Control Systems Magazine 27(6), 25–38 (2007).
  15. 15.
    Diehl, M., Horn, G., Zanon, M.: Multiple Wing Systems – an Alternative to Upscaling? In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 96, Delft, The Netherlands, 15–16 June 2015. Presentation video recording available from:
  16. 16.
    Duquette, M. M., Visser, K. D.: Numerical Implications of Solidity and Blade Number on Rotor Performance of Horizontal-Axis Wind Turbines. Journal of Solar Energy Engineering 125, 425–432 (2003).
  17. 17.
    Fletcher, C. A. J., Roberts, B. W.: Electricity generation from jet-stream winds. Journal of Energy 3(4), 241–249 (1979).
  18. 18.
    Hodges, T.: Centrifugally Stiffened Rotor. NIA Task Order Number 6528 Final Report, National Institute of Aerospace, 1 June 2015, pp. 57–147.
  19. 19.
    Ippolito, M.: Kite wind energy collector. Patent WO2014199407 A1, Dec 2014Google Scholar
  20. 20.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980).
  21. 21.
    Michel, D., Koyama, K., Krebs, M., Johns, M.: Build and test a three kilowatt prototype of a coaxial multi-rotor wind turbine. Independent Assessment Report CEC-500-2007-111, Dec 2007.
  22. 22.
    Moore, M. D.: Eternal Flight as the Solution for X. Presented at the NIAC 2014 Symposium, Stanford University, Palo Alto, CA, USA, 4–6 Feb 2014.
  23. 23.
    Rancourt, D., Bolduc-Teasdale, F., Demers Bouchard, E., Anderson, M. J., Mavris, D. N.: Design space exploration of gyrocopter-type airborne wind turbines. Wind Energy 19, 895–909 (2016).
  24. 24.
    Read, R.: Opportunities and Progress in Open AWE Hardware. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 118–120, Delft, The Netherlands, 15–16 June 2015. Poster available from:
  25. 25.
    Roberts, B.W., Shepard, D. H., Caldeira, K., Cannon, M. E., Eccles, D. G., Grenier, A. J., Freidin, J. F.: Harnessing High-Altitude Wind Power. IEEE Transactions on Energy Conversion 22(1), 136–144 (2007).
  26. 26.
    Rye, D. C., Blacker, J., Roberts, B. W.: The Stability of a Tethered Gyromill. AIAA-Paper 81-2569. In: Proceedings of the AlAA 2nd Terrestrial Energy Systems Conference, Colorado Springs, CO, USA, 1–3 Dec 1981.
  27. 27.
    Schmehl, R.: Large-scale power generation with kites. Journal of the Society of Aerospace Engineering Students VSV Leonardo da Vinci March, 21–22 (2012).
  28. 28.
    Schmehl, R.: Parotor. Accessed 25 Oct 2016
  29. 29.
    Selfridge, J. M., Tao, G.: Centrifugally Stiffened Rotor: A Complete Derivation and Simulation of the Inner Loop Controller. AIAA-Paper 2015-0073. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference (AIAA SciTech), Kissimmee, FL, USA, 5–9 Jan 2015.
  30. 30.
    Snieckus, D.: Giant airborne ’power station’ could blow rivals out of the water. Recharge News, 6 Mar 2012. Accessed 21 July 2016
  31. 31.
    Williams, P., Lansdorp, B., Ruiterkamp, R., Ockels, W.: Modeling, Simulation, and Testing of Surf Kites for Power Generation. AIAA Paper 2008-6693. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Honolulu, HI, USA, 18–21 Aug 2008.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Paisy-CosdonFrance
  2. 2.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations