Numerical Investigation of Optical Sorting Using the Discrete Element Method

  • C. Pieper
  • H. Kruggel-Emden
  • S. Wirtz
  • V. Scherer
  • F. Pfaff
  • B. Noack
  • U. D. Hanebeck
  • G. Maier
  • R. Gruna
  • T. Längle
  • J. Beyerer
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 188)

Abstract

Automated optical sorting systems are important devices in the growing field of bulk solids handling. The initial sorter calibration and the precise optical sorting of many materials is still very time consuming and difficult. A numerical model of an automated optical belt sorter is presented in this study. The sorter and particle interaction is described with the Discrete Element Method (DEM) while the separation phase is considered in a post processing step. Different operating parameters and their influence on sorting quality are investigated. In addition, two models for detecting and predicting the particle movement between the detection point and the separation step are presented and compared, namely a conventional line scan camera model and a new approach combining an area scan camera model with particle tracking.

References

  1. 1.
    Duran, J.: Sands, Powders and Grains. Springer, New York (2000)CrossRefGoogle Scholar
  2. 2.
    Stieß, M.: Mechanische Verfahrenstechnik 1. Springer, Berlin (1995)CrossRefGoogle Scholar
  3. 3.
    McGlichey, D.: Characterisation of Bulk Solids. Blackwell Publishing Ltd., Oxford (2005)CrossRefGoogle Scholar
  4. 4.
    De Jong, T.P.R., Harbeck, H.: Automated sorting of minerals: current status and future outlook. In: Proceedings of the 37th Canadian Mineral Processors Conference, pp. 629–648 (2005)Google Scholar
  5. 5.
    Pascoe, R.D., Udoudo, O.B., Glass, H.J.: Efficiency of automated sorter performance based on particle proximity information. Miner. Eng. 23, 806–812 (2010)CrossRefGoogle Scholar
  6. 6.
    Pascoe, R.D., Fitzpatrick, R., Garratt, J.R.: Prediction of automated sorter performance utilizing a Monte Carlo simulation of feed characteristics. Miner. Eng. 72, 101–107 (2015)CrossRefGoogle Scholar
  7. 7.
    Fitzpatrick, R.S., Glass, H.J., Pascoe, R.D.: CFD-DEM modelling of particle ejection by a sensor-based automated sorter. Miner. Eng. 79, 176–184 (2015)CrossRefGoogle Scholar
  8. 8.
    Pfaff, F., Baum, M., Noack, B., Hanebeck, U.D., Gruna, R., Laengle, T., et al.: TrackSort: predictive tracking for sorting uncooperative bulk materials. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems 2015 (2015)Google Scholar
  9. 9.
    Pfaff, F., Pieper, C., Maier, G., et al.: Improving optical sorting of bulk materials using sophisticated motion models. tm—Tech. Mess. 83, 77–84 (2016)Google Scholar
  10. 10.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  11. 11.
    Sudbrock, F., Simsek, E., Rickelt, S., Wirtz, S., Scherer, V.: Discrete element analysis of experiments on mixing and stoking of monodisperse spheres on a grate. Powder Technol. 208, 111–120 (2011)CrossRefGoogle Scholar
  12. 12.
    Höhner, D.: Experimentelle und numerische Untersuchungen zum Einfluss von Partikelgeometrie auf das mechanische Verhalten von Schüttgütern mit Hilfe der Diskreten Elemente Methode (2014)Google Scholar
  13. 13.
    Kruggel-Emden, H., Simsek, E., Rickelt, S., Wirtz, S., Scherer, V.: Review and extension of normal force models for the discrete element method. Powder Technol. 171, 157–173 (2007)CrossRefGoogle Scholar
  14. 14.
    Kruggel-Emden, H., Wirtz, S., Scherer, V.: An analytical solution of different configurations of the linear viscoelastic normal and frictional-elastic tangential contact model. Chem. Eng. Sci. 62, 6914–6926 (2007)CrossRefGoogle Scholar
  15. 15.
    Vollmari, K., Jasevicius, R., Kruggel-Emden, H.: Experimental and numerical study of fluidization and pressure drop of spherical and non-spherical particles in a model scale fluidized bed. Powder Technol. 291, 506–521 (2016)CrossRefGoogle Scholar
  16. 16.
    Höhner, D., Wirtz, S., Scherer, V.: Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Powder Technol. 235, 614–627 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • C. Pieper
    • 1
  • H. Kruggel-Emden
    • 1
  • S. Wirtz
    • 1
  • V. Scherer
    • 1
  • F. Pfaff
    • 2
  • B. Noack
    • 2
  • U. D. Hanebeck
    • 2
  • G. Maier
    • 3
  • R. Gruna
    • 3
  • T. Längle
    • 3
  • J. Beyerer
    • 3
  1. 1.Ruhr-University BochumBochumGermany
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Fraunhofer Institute of Optronics, System Technologies and Image ExploitationKarlsruheGermany

Personalised recommendations