Isolated Microspore Culture and Its Applications in Plant Breeding and Genetics

  • Mehran E. ShariatpanahiEmail author
  • Behzad Ahmadi


Isolated microspore culture (IMC) represents a unique system of single cell reprogramming in plants wherein a haploid male gametophyte, the microspore, switches its default gametophytic developmental pathway toward embryogenesis by specific stress treatment. The application of a stress treatment(s) is necessary for efficient embryogenesis induction. Depending on species, microspores are often induced by cold and heat shock, osmotic stress, starvation, anti-microtubular agents, stress hormones, antibiotics, or polyamines. This technique (IMC) is likely to remain as a well-known method in plant breeding since it allows for the rapid production of completely homozygous lines while, in the context of developmental biology, it allows for in vitro embryogenesis to be explored in greater detail. Isolated microspores also represent ideal recipients for several gene transfer techniques including electroporation, microprojectile bombardment, and Agrobacterium-mediated transformation. IMC is also extensively used for genetic studies, i.e., studying inheritance of quantitative traits, quantitative trait loci (QTL) mapping, and genomics and gene identification, for mutation and selection and also used for producing reversible male-sterile lines. Male sterility avoids the labor costs of manual emasculation and serves as a molecular strategy for transgene containment by preventing pollen release to the environment. Combination of this technique with doubled haploid (DH) production leads to an innovative environmentally friendly breeding technology. In addition, the usefulness of DHs for reverse breeding program, an applied plant breeding technique introduced to directly produce parental lines for any hybrid plant, is also generally discussed.


Doubled haploid Microspore embryogenesis Stress Breeding Genetics 


  1. Abdollahi MR, Corral-Martínez P, Mousavi A, Salmanian AH, Moini A, Seguí-Simarro JM (2009) An efficient method for transformation of pre-androgenic, isolated Brassica napus microspores involving microprojectile bombardment and Agrobacterium-mediated transformation. Acta Physiol Plant 31(6):1313–1317CrossRefGoogle Scholar
  2. Ahloowalia BS, Maluszynski M (2001) Induced mutations-a new paradigm in plant breeding. Euphytica 118:167–173CrossRefGoogle Scholar
  3. Ahmad I, Day JP, MacDonald MV, Ingram DS (1991) Haploid culture and UV mutagenesis in rapid-cycling Brassica napus for the generation of resistance to chlorsulfuron and Alternaria brassicicola. Ann Bot 67(6):521–525Google Scholar
  4. Ahmadi B, Alizadeh K, Teixeira da Silva JA (2012a) Enhanced regeneration of haploid plantlets from microspores of Brassica napus L. using bleomycin, PCIB, and phytohormones. Plant Cell Tissue Organ Cult 109:525–533CrossRefGoogle Scholar
  5. Ahmadi B, Ghadimzadeh M, Moghaddam AF, Alizadeh K, Teixeira da Silva JA (2012b) Bud length, plating density, and incubation time on microspore embryogenesis in Brassica napus. Int J Veg Sci 18:346–357CrossRefGoogle Scholar
  6. Ahmadi B, Shariatpanahi ME, Teixeira da Silva JA (2014) Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell Tissue Organ Cult 116:343–351CrossRefGoogle Scholar
  7. Ajisaka H, Kuginuki Y, Yui S, Enomoto S, Hirai M (2001) Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp. Pekinensis syn. campestris L.) using bulked segregant analysis. Euphytica 118:75–81CrossRefGoogle Scholar
  8. Asif M (2013) History, production methods, and types of haploids. Prog Oppor Doubled Haploid Plant 6:1–6CrossRefGoogle Scholar
  9. Asif M, Eudes F, Goyal A, Amundsen E, Randhawa H, Spaner D (2013a) Organelle antioxidants improve microspore embryogenesis in wheat and triticale. In Vitro Cell Dev Biol Plant 49(5):489–497CrossRefGoogle Scholar
  10. Asif M, Eudes F, Randhawa H, Amundsen E, Yanke J, Spaner D (2013b) Cefotaxime prevents microbial contamination and improves microspore embryogenesis in wheat and triticale. Plant Cell Rep 32(10):1637–1646PubMedCrossRefGoogle Scholar
  11. Ayed OS, Buyser JD, Picard E, Trifa Y, Amara HS (2010) Effect of pre-treatment on isolated microspore culture ability in durum wheat (Triticum turgidum subsp. durum Desf.). J Plant Breed Crop Sci 2(2):30–38Google Scholar
  12. Bal U, Elliatioglu S, Abak K (2009) Induction of symmetrical nucleus division and multi-nucleate structures in microspores of eggplant (Solanum melongena L.) cultured in vitro. Sci Agric 66(4):535–539CrossRefGoogle Scholar
  13. Barro F, Fernandez-Escobar J, De la Vega M, Martin A (2001) Doubled haploid lines of Brassica carinata with modified erucic acid content through mutagenesis by EMS treatment of isolated microspores. Plant Breed 120:262–264CrossRefGoogle Scholar
  14. Barro F, Fernandez-Escobar J, De la Vega M, Martin A (2002) Modification of glucosinolate and erucic acid contents in doubled haploid lines of Brassica carinata by UV treatment of isolated microspores. Euphytica 129:1–6CrossRefGoogle Scholar
  15. Birchler JA, Auger DL, Riddle NC (2003) In search of the molecular basis of heterosis. Plant Cell 15:2236–2239PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bohanec B (2009) Doubled haploids via gynogenesis. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer Science+Business Media B.V, Dordrecht, pp 35–46. ISBN 978-1-4020-8853-7Google Scholar
  17. Bourgin JP, Nitsch JP (1967) Obtention de Nicotiana haploids a partir d’etamines cultivees in vitro. Ann Physiol Veg 9:377–382Google Scholar
  18. Brew-Appiah RA, Ankrah N, Liu W, Konzak CF, von Wettstein D, Rustgi S (2013) Generation of doubled haploid transgenic wheat lines by microspore transformation. PLoS One. doi: 10.1371/journal.pone.0080155 PubMedPubMedCentralGoogle Scholar
  19. Cegielska-Taras T, Pniewski T, Szala L (2008) Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens. J Appl Genet 49(4):343–347PubMedCrossRefGoogle Scholar
  20. Chan J, Pauls KP (2007) Brassica napus Rop GTPases and their expression in microspore cultures. Planta 225:469–484PubMedCrossRefGoogle Scholar
  21. Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty PBE, Tahir M (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174CrossRefGoogle Scholar
  22. Clapham D, Manders G, Yibrah HS, von Arnold S (1995) Enhancement of short- and medium-term expression of transgenes in embryogenic suspensions of Picea abies (L.) Karst. J Exp Bot 46:655–662CrossRefGoogle Scholar
  23. Cloud V, Chan YL, Grubb J, Budke B, Bishop DK (2012) Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337(6099):1222–1225PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cloutier S, Ragupathy R, Niu Z, Duguid S (2011) SSR-based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits. Mol Breed 28:437–451CrossRefGoogle Scholar
  25. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572CrossRefGoogle Scholar
  26. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  27. Dirks R, van Dun K, de Soon CB, van der Berg M, Lelivelt CLC, Voermans W et al (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7:837845CrossRefGoogle Scholar
  28. Dubas E, Wedzony M, Petrovska B, Salaj J, Żur I (2010) Cell structural reorganization during induction of androgenesis in isolated microspore cultures of triticale (x Triticosecale Wittm.). Acta Biol Cracov Bot 52(1):73–86Google Scholar
  29. Dubas E, Custers J, Kieft H, Wedzony M, van Lammeren AA (2011) Microtubule configurations and nuclear DNA synthesis during initiation of suspensor-bearing embryos from Brassica napus cv. Topas microspores. Plant Cell Rep 30(11):2105–2116PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dubas E, Janowiak F, Krzewska M, Hura T, Żur I (2013) Endogenous ABA concentration and cytoplasmic membrane fluidity in microspores of oilseed rape (Brassica napus L.) genotypes differing in responsiveness to androgenesis induction. Plant Cell Rep 32(9):1465–1475PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dubas E, Moravčíková J, Libantová J, Matušíková I, Benková E, Żur I, Krzewska M (2014) The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos. Protoplasma 251:1077–1087PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424PubMedCrossRefGoogle Scholar
  33. Feng-Ian Z, Takahata Y (1999) Microspore mutagenesis and in vitro selection for resistance to soft rot disease in soft rot in Chinese cabbage (Brassica campestris L. spp. pekinensis). Breed Sci 49:161–166CrossRefGoogle Scholar
  34. Fennell A, Hauptmann R (1992) Electroporation and PEG delivery of DNA into maize microspores. Plant Cell Rep 11:567–570PubMedCrossRefGoogle Scholar
  35. Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult 104:301–309CrossRefGoogle Scholar
  36. Ferrie AMR, Möllers C (2010) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Org Cult 104:375–386CrossRefGoogle Scholar
  37. Ferrie AMR, Taylor DC, MacKenzie SL, Rakow G, Raney JP, Keller WA (2008) Microspore mutagenesis of Brassica species for fatty acid modifications: a preliminary evaluation. Plant Breed 127:501–506CrossRefGoogle Scholar
  38. Folling L, Olesen A (2001) Transformation of wheat (Triticum aestivum L.) microspore derived callus and microspores by particle bombardment. Plant Cell Rep 20(7):629–636CrossRefGoogle Scholar
  39. Forster BP, Thomas WTB (2003) Doubled haploids in genetic mapping and genomic. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Kluwer Academic Publishers, Dordrecht, pp 367–390Google Scholar
  40. Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375PubMedCrossRefGoogle Scholar
  41. Ge Y, Wang T, Wang N, Wang Z, Liang C, Ramchiary N, Choi SR, Lim YP, Piao ZY (2012) Genetic mapping and localization of quantitative trait loci for chlorophyll content in Chinese cabbage (Brassica rapa ssp. pekinensis). Sci Horticult 147:42–48CrossRefGoogle Scholar
  42. Germana MA (2006) Doubled haploid production in fruit crops. Plant Cell Tiss Org Cult 86:131–146CrossRefGoogle Scholar
  43. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 42:909–930CrossRefGoogle Scholar
  44. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497CrossRefGoogle Scholar
  45. Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V et al (2014) True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS One 9(3):e92046. doi: 10.1371/journal.pone.0092046 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Han SY, Zhang HY, Yang ML, Zhao TJ, Gai JY, Yu DY (2007) Screening of mutants and construction of mutant population in soybean “Nannong 86-4”. Acta Agron Sin 33:2059–2062Google Scholar
  47. Hansel G, Oleszczuk S, Daghma DES, Zimny J, Melzer M, Kumlehn J (2012) Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack). BMC Plant Biol 12:171CrossRefGoogle Scholar
  48. Hoseini M, Ghadimzadeh M, Ahmadi B, Teixeira da Silva JA (2014) Effects of ascorbic acid, alpha-tocopherol, and glutathione on microspore embryogenesis in Brassica napus L. In Vitro Cell Dev Biol Plant 50:26–35CrossRefGoogle Scholar
  49. Huang S, Liu Z, Li D, Yao R, Meng Q, Feng H (2014) Screening of Chinese cabbage mutants produced by 60Co γ-ray mutagenesis of isolated microspore cultures. Plant Breed 133:480–488CrossRefGoogle Scholar
  50. Hussain B, Khan MA, Ali Q, Shaukat S (2012) Double haploid production is the best method for genetic improvement and genetic studies of wheat. Int J Agro Vet Med Sci 6(4):216–228Google Scholar
  51. Ilyas M, Ilyas N, Arshad M, Kazi AG, Kazi AM, Waheed A (2014) QTL mapping of wheat doubled for chlorophyll content and chlorophyll fluorescence kinetics under drought stress imposed at anthesis stage. Pak J Bot 46(5):1889–1897Google Scholar
  52. Immonen S, Anttila H (1996) Success in rye anther culture. Vortr Pflanzenzüchtg 35:237–244Google Scholar
  53. Indrianto A, Mariani TS, Sari DA (2014) Induction of embryogenic microspore in oil palm (Elaeis guineensis Jacq) by starvation and temperature stress. Asia J Appl Sci 2(5):668–677Google Scholar
  54. Ingram HM, Power JB, Lowe KC, Davey MR (1999) Optimisation of procedures for microprojectile bombardment of microspore-derived embryos in wheat. Plant Cell Tiss Org Cult 57:207–210CrossRefGoogle Scholar
  55. Islam SMS (2010) The effect of colchicine pretreatment on isolated microspore culture of wheat (Triticum aestivum L.). Aust J Crop Sci 4(9):660–665Google Scholar
  56. Janska A, Zelenkova S, Klima M, Vyvadilova M, Prasil IT (2010) Freezing tolerance and proline content of in vitro selected hydroxyproline resistant winter oilseed rape. Czech J Genet Plant Breed 46(1):35–40Google Scholar
  57. Jardinaut MF, Souvre A, Alibert G (1993) Transient GUS gene expression in Brassica napus electroporated microspores. Plant Sci 93:177–184CrossRefGoogle Scholar
  58. Jardinaut MF, Souvre A, Beckert M, Alibert G (1995) Optimization of DNA transfer and transient b-glucuronidase expression in electroporated maize (Zea mays L.) microspores. Plant Cell Rep 15:55–58CrossRefGoogle Scholar
  59. Jauhar PP (2003) Haploid and doubled haploid production in durum wheat by anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, pp 167–172CrossRefGoogle Scholar
  60. Jin M, Lee SS, Ke L, Kim JS, Seo MS, Sohn SH, Park BS, Bonnema G (2014) Identification and mapping of a novel dominant resistance gene, TuRB07 to Turnip mosaic virus in Brassica rapa. Theor Appl Genet 127:509–519PubMedCrossRefGoogle Scholar
  61. Jung KH, An G (2013) Functional characterization of rice genes using a gene-indexed T-DNA insertional mutant population. Rice Protoc 956:57–67CrossRefGoogle Scholar
  62. Kim M, Jang IC, Kim JA, Park EJ, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27(3):425–434PubMedCrossRefGoogle Scholar
  63. Klima M, Vyvadilova M, Kucera V (2008) Chromosome doubling effects of selected antimitotic agents in Brassica napus microspore culture. Czech J Genet Plant Breed 44(1):30–36Google Scholar
  64. Lantos C, Juhász AG, Mihály PVR, Kristóf Z, Paul J (2012) Androgenesis induction in microspore culture of sweet pepper (Capsicum annuum L.). Plant Biotechnol Rep 6(2):123–132CrossRefGoogle Scholar
  65. Li JR, Zhuang FY, Qu CG, Hu H, Zhao ZW, Mao JH (2012) Microspore embryogenesis and production of haploid and doubled haploid plants in carrot (Daucus carota L.). Plant Cell Tiss Org Cult 112(3):275–287CrossRefGoogle Scholar
  66. Lionneton E, Ravera S, Sanchez L, Aubert G, Delourme R, Ochatt S (2002) Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassica juncea). Genome 45:1203–1215PubMedCrossRefGoogle Scholar
  67. Liu S, Wang H, Zhang J, Fitt BDL, Xu Z, Evans N, Liu Y, Yang W, Guo X (2005) In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep 24:133–144PubMedCrossRefGoogle Scholar
  68. Lou P, Zhao J, He H, Hanhart C, Carpio DND, Verkerk R, Custers J, Koorneef M, Bonnema G (2008) Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New Phytol 179:1017–1032PubMedCrossRefGoogle Scholar
  69. Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434PubMedCrossRefGoogle Scholar
  70. Martinez V, Thorgaard G, Robison B, Sillanpää MJ (2005) An application of Bayesian QTL mapping to early development in double haploid lines of rainbow trout including environmental effects. Genet Res 86(3):209–221PubMedCrossRefGoogle Scholar
  71. McClinchey SL, Kott LS (2008) Production of mutants with high cold tolerance in spring canola (Brassica napus). Euphytica 162:51–67CrossRefGoogle Scholar
  72. Mentewab A, Letellier V, Marque C, Sarrafi A (1999) Use of anthocyanin biosynthesis stimulatory genes as markers for the genetic transformation of haploid embryos and isolated microspores in wheat. Cereal Res Commun 27(1–2):17–24Google Scholar
  73. Mishra VK, Goswami R (2014) Haploid production in higher plant. Int J Chem Biol Sci 1(1):25–45Google Scholar
  74. Muñoz-Amatriaín M, Sevensson JT, Castillo AM, Cistue L, Close TJ (2006) Transcriptome analysis of barely anthers: effect of mannitol treatment on microspore embryogenesis. Physiol Plant 127:551–560CrossRefGoogle Scholar
  75. Nehlin L, Mollers C, Bergman P, Glimelius K (2000) Transient f3-gus and gfp gene expression and viability analysis of microprojectile bombarded microspores of Brassica napus L. J Plant Physiol 156:175–183CrossRefGoogle Scholar
  76. Nishioka M, Tamura K, Hayashi M, Fujimori Y, Ohkawa Y, Kuginuki Y, Harada K (2005) Mapping of QTLs for bolting time in Brassica rapa (syn. campestris) under different environmental conditions. Breed Sci 55:127–133CrossRefGoogle Scholar
  77. Obert B, Ponya Z, Pretova A, Barnabas B (2004) Optimization of electroporation conditions for maize microspores. Maydica 49:15–19Google Scholar
  78. Palmgren MG, Edenbrandt AK, Elizabeth S, Andersen VMM, Landes X, Østerberg JT, Falhof J et al (2014) Are we ready for back-to-nature crop breeding? Trend Plant Sci 1238:1–10Google Scholar
  79. Parez-Prat E, van Lookeren Compagne MM (2002) Hybrid seed production and the challenge of propagating malesterile plants. Trends Plant Sci 7(5):199–203CrossRefGoogle Scholar
  80. Pink D, Bailey L, McClement S, Hand P, Mathas E, Buchanan-Wollaston V, Astley D, King G, Teakle G (2008) Double haploids, markers and QTL analysis in vegetable Brassicas. Euphytica 164:509–514CrossRefGoogle Scholar
  81. Polsoni L, Kott LS, Beversdorf WD (1987) Large-scale microspore culture technique for mutation – selection studies in Brassica napus. Can J Bot 66:1681–1685CrossRefGoogle Scholar
  82. Portemer V, Renne C, Guillebaux A, Mercier R (2015) Large genetic screens for gynogenesis and androgenesis haploid inducers in Arabidopsis thaliana failed to identify mutants. Front Plant Sci 6:147. doi: 10.3389/fpls.2015.00147 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Prem D, Solís MT, Bárány I, Rodríguez-Sanz H, Risueño MC, Testillano PS (2012a) A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus. BMC Plant Biol 12:127. doi: 10.1186/1471-2229-12-127 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Prem D, Gupta K, Agnihotri A (2012b) Harnessing mutant donor plants for microspore culture in Indian mustard [Brassica juncea (L.) Czern and Coss]. Euphytica 184:207–222CrossRefGoogle Scholar
  85. Qin YH, Teixeira da Silva JA, Bi JH, Zhang SL, Hu GB (2011) Response of in vitro strawberry to antibiotics. Plant Growth Regul 65:183–193CrossRefGoogle Scholar
  86. Resch T, Touraev A (2011) Pollen transformation technologies. In: Stewart N, Touraev A, Citovsky V, Tzfira T, (eds) Plant transformation technologies. Wiley-Blackwell, Chichester, pp 83–91Google Scholar
  87. Ribarits A, Mamun ANK, Li S, Resch T, Fiers M, Heberle-Bors E, Liu CM, Touraev A (2007) Combination of reversible male sterility and doubled haploid production by targeted inactivation of cytoplasmic glutamine synthetase in developing anthers and pollen. Plant Biotechnol J 5:483–494PubMedCrossRefGoogle Scholar
  88. Rodríguez-Sanz H, Manzanera J, Solis M, Gómez-Garay A, Pintos B, Risueño MC, Testillano PS (2014) Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L. BMC Biol. doi: 10.1186/s12870-014-0224-4 Google Scholar
  89. Rodríguez-Serrano M, Bárány I, Prem D, Coronado MJ, Risueño MC, Testillano PS (2011) NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. J Exp Bot 63:2007–2024PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rygulla W, Snowdon RJ, Friedt W, Happstadius I, Cheung WY, Chen D (2008) Identification of quantitative trait loci for resistance against Verticillium longisporum in oilseed rape (Brassica napus). Genet Res 98(2):215–221Google Scholar
  91. Scofield S, Dewitte W, Nieuwland J, Murray JA (2013) The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity. Plant J 75(1):53–66PubMedCrossRefGoogle Scholar
  92. Seyis F, Aydin E, Catal MI (2014) Haploids in the improvement of crucifers. Turk J Agric Nat Sci 2:1419–1424Google Scholar
  93. Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534CrossRefGoogle Scholar
  94. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. doi: 10.1155/2012/217037 Google Scholar
  95. Shim YS, Pauls KP, Kasha KJ (2009) Transformation of isolated barely (Hordeum vulgare L.) microspores: II: timing of pretreatment and temperatures relative to results of bombardment. Gemone 52:175–190Google Scholar
  96. Soriano M, Cistue L, Valles MP, Castillo AM (2007) Effects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.). Plant Cell Tiss Org Cult 91(3):225–234CrossRefGoogle Scholar
  97. Soriano M, Li H, Boutilier K (2013) Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod 26:181–196PubMedPubMedCentralCrossRefGoogle Scholar
  98. Stasolla C, Belmonte MF, Tahir M, Elhiti M, Khamiss K, Joosen R, Maliepaard C, Sharpe A, Gjetvaj B, Boutilier K (2008) Buthionine sulfoximine (BSO)-mediated improvement in cultured embryo quality in vitro entails changes in ascorbate metabolism, meristem development and embryo maturation. Planta 228(2):255–272PubMedCrossRefGoogle Scholar
  99. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002PubMedCrossRefGoogle Scholar
  100. Swanson EB, Coumans MP, Brown GL, Patel JD, Beversdorf WD (1988) The characterization of herbicide tolerant plants in Brassica napus L. after in vitro selection of microspores and protoplasts. Plant Cell Rep 7:83–87PubMedCrossRefGoogle Scholar
  101. Swanson EB, Herrgesell MJ, Arnoldo M, Sippell DW, Wong RSC (1989) Microspore mutagenesis and selection: canola plants with field tolerance to the imidazolinones. Theor Appl Genet 78:525–530PubMedCrossRefGoogle Scholar
  102. Szarejko I, Forster BP (2007) Doubled haploidy and induced mutation. Euphytica 130:359–370CrossRefGoogle Scholar
  103. Takahata Y, Fukuoka H, Wakui K (2005) Utilization of microspore-derived embryos. In: Plamer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II. Springer, Berlin, pp 153–169CrossRefGoogle Scholar
  104. Toppino L, Kooiker M, Lindner M, Dreni L, Rotino GL, Kater MM (2011) Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes. Plant Biotechnol J 9:684–692PubMedCrossRefGoogle Scholar
  105. Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789PubMedCrossRefGoogle Scholar
  106. Wang NL, Long T, Yao W, Xiong LZ, Zhang QF, Wu CY (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6:596–604PubMedCrossRefGoogle Scholar
  107. Wijnker E, van Dun K, de Snoo CB, Lelivelt CLC, Keurentjes JJB, Naharudin NS, Ravi M, Chan SWL, de Jong H, Dirks R (2012) Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nat Genet 44:467–470PubMedCrossRefGoogle Scholar
  108. Wu J, Cai G, Tu J, Li L, Liu S et al (2013) Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS One 8(7):e67740. doi: 10.1371/journal.pone.0067740 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Xu YH, Chen F, Dong ZD, Cui DQ (2010) Construction and analysis of EMS induced mutant library of hexaploid wheat cultivar Yunong 201. J Tritic Crops 30:625–629Google Scholar
  110. Yang X, Yu YJ, Zhang FL, Zou ZR, Zhao XY, Zhang DS, Xu JB (2007) Linkage map construction and quantitative trait loci analysis for bolting based on a double haploid population of Brassica rapa. J Integr Plant Biol 49(5):664–671CrossRefGoogle Scholar
  111. Yang P, Shu S, Chen L, Xu J, Wu J, Liu K (2012) Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet 125:285–296PubMedCrossRefGoogle Scholar
  112. Yao QA, Simion E, William M, Krochko J, Kasha KJ (1997) Biolistic transformation of haploid isolated microspores of barley (Hordeum vulgare L.). Genome 40:570–581PubMedCrossRefGoogle Scholar
  113. Yu F, Lydiate DJ, Rimmer SR (2005) Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet 110:969–979PubMedCrossRefGoogle Scholar
  114. Yu F, Lydiate DJ, Rimmer SR (2008) Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris. Genome 51:64–72PubMedCrossRefGoogle Scholar
  115. Yu S, Zhang F, Yu R, Zou Y, Qi J, Zhao X, Yu Y, Zhang D, Li L (2009) Genetic mapping and localization of a major QTL for seedling resistance to downy mildew in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Breed 23:573–590CrossRefGoogle Scholar
  116. Zhang FL, Wang M, Liu XC, Zhao XY, Yang JP (2008) Quantitative trait loci analysis for resistance against Turnip mosaic virus based on a doubled-haploid population in Chinese cabbage. Plant Breed 127:82–86Google Scholar
  117. Ziemienowicz A, Shim Y-S, Matsuoka A, Eudes F, Kovalchuk I (2012) A novel method of transgene delivery into Triticale plants using the Agrobacterium transferred DNA-derived nano-complex. Plant Physiol 158:1503–1513PubMedPubMedCentralCrossRefGoogle Scholar
  118. Żur I, Dubas E, Golemier F, Szechynska-Hebda M, Golehiowska G, Wedzony M (2009) Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (× Triticosecale Wittm.). Plant Cell Rep 28:1279–1287PubMedCrossRefGoogle Scholar
  119. Żur I, Krzewska M, Dubas E, Gołębiowska-Pikania G, Janowiak F, Stojalowski S (2012) Molecular mapping of loci associated with abscisic acid accumulation in triticale (×Triticosecale Wittm.) anthers in response to low temperature stress inducing androgenic development. Plant Growth Regul 68(3):483–492CrossRefGoogle Scholar
  120. Żur L, Dubas E, Krzewska M, Janowiak F, Hura K, Pociecha E, Baczek-Kwinta R, Plazek A (2014) Antioxidant activity and ROS tolerance in triticale (×Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell Tiss Org Cult 119:79–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO)KarajIran

Personalised recommendations