Advertisement

Cost-Precision Tradeoffs in 3D Air Pollution Mapping Using WSN

  • Ahmed Boubrima
  • Walid Bechkit
  • Hervé Rivano
  • Lionel Soulhac
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 397)

Abstract

Air pollution has become a major issue of modern megalopolis, where the majority of world population lives. Measuring air pollution levels is an important step in designing and assessing air quality related public policies. Unfortunately, existing solutions are inadequate to get insights on the real exposition of citizens. In particular, high quality sensors deployed today are too large and too costly to envision a three dimensional deployment at the scale of a street. In this paper, we investigate the deployment of wireless sensor networks (WSN) used for building a three-dimensional mapping of pollution concentrations. We consider in our simulations a 3D model of air pollution dispersion based on real experiments performed in wind tunnels emulating the pollution emitted by a steady state traffic flow in a typical street canyon. Our contribution is to analyze the performances of different 3D WSN topologies in terms of the trade-off between the economical cost of the infrastructure and the quality of the reconstructed air pollution mapping.

Keywords

Wireless Sensor Network Wind Tunnel Pollution Concentration Street Canyon Smart City 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported by the “LABEX IMU” (ANR-10-LABX-0088) and the “Programme Avenir Lyon Saint-Etienne” of Université de Lyon, within the program “Investissements d’ Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

References

  1. 1.
    Boubrima, A., Bechkit, W., Rivano, H.: Optimal deployment of dense wsn for error bounded air pollution mapping. In: International Conference on Distributed Computing in Sensor Systems (DCOSS 2016). IEEE (2016)Google Scholar
  2. 2.
    Chakrabarty, K., Iyengar, S.S., Qi, H., Cho, E.: Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans. Comput. 51(12), 1448–1453 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Devarakonda, S., Sevusu, P., Liu, H., Liu, R., Iftode, L., Nath, B.: Real-time air quality monitoring through mobile sensing in metropolitan areas. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing. p. 15. ACM (2013)Google Scholar
  4. 4.
    Hasenfratz, D., Saukh, O., Walser, C., Hueglin, C., Fierz, M., Thiele, L.: Pushing the spatio-temporal resolution limit of urban air pollution maps. In: 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 69–77. IEEE (2014)Google Scholar
  5. 5.
    Hoek, G., Beelen, R., De Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., Briggs, D.: A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 42(33), 7561–7578 (2008)CrossRefGoogle Scholar
  6. 6.
    Jerrett, M., Arain, A., Kanaroglou, P., Beckerman, B., Potoglou, D., Sahsuvaroglu, T., Morrison, J., Giovis, C.: A review and evaluation of intraurban air pollution exposure models. J. Exposure Sci. Environ. Epidemiol. 15(2), 185–204 (2005)CrossRefGoogle Scholar
  7. 7.
    Kumar, A., Kim, H., Hancke, G.P.: Environmental monitoring systems: a review. Sens. J. IEEE 13(4), 1329–1339 (2013)CrossRefGoogle Scholar
  8. 8.
    Marjovi, A., Arfire, A., Martinoli, A.: High resolution air pollution maps in urban environments using mobile sensor networks. In: 2015 International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 11–20. IEEE (2015)Google Scholar
  9. 9.
    Marshall, J.D., Nethery, E., Brauer, M.: Within-urban variability in ambient air pollution: comparison of estimation methods. Atmos. Environ. 42(6), 1359–1369 (2008)CrossRefGoogle Scholar
  10. 10.
    Mead, M., Popoola, O., Stewart, G., Landshoff, P., Calleja, M., Hayes, M., Baldovi, J., McLeod, M., Hodgson, T., Dicks, J., et al.: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos. Environ. 70, 186–203 (2013)CrossRefGoogle Scholar
  11. 11.
    Rajasegarar, S., Havens, T.C., Karunasekera, S., Leckie, C., Bezdek, J.C., Jamriska, M., Gunatilaka, A., Skvortsov, A., Palaniswami, M.: High-resolution monitoring of atmospheric pollutants using a system of low-cost sensors. IEEE Trans. Geosci. Remote Sens. 52(7), 3823–3832 (2014)CrossRefGoogle Scholar
  12. 12.
    Salizzoni, P., Soulhac, L., Mejean, P.: Street canyon ventilation and atmospheric turbulence. Atmos. Environ. 43 (2009)Google Scholar
  13. 13.
    Air Rhône-Alpes: The air quality monitoring organization of the lyon agglomeration. http://www.air-rhonealpes.fr (2016). Accessed 27 Jan 2016
  14. 14.
    International Agency for Research on Cancer: Iarc: Outdoor air pollution a leading environmental cause of cancer deaths, on. http://www.iarc.fr/en/media-centre/iarcnews/pdf/pr221_E.pdf (2016). Accessed 27 Jan 2016
  15. 15.
    World Health Organization: Burden of disease from household air pollution for 2012, on http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf (2016). Accessed 27 Jan 2016
  16. 16.
    Wong, D.W., Yuan, L., Perlin, S.A.: Comparison of spatial interpolation methods for the estimation of air quality data. J. Exposure Sci. Environ. Epidemiol. 14(5), 404–415 (2004)CrossRefGoogle Scholar
  17. 17.
    Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)CrossRefGoogle Scholar
  18. 18.
    Younis, M., Akkaya, K.: Strategies and techniques for node placement in wireless sensor networks: a survey. Ad Hoc Netw. 6(4), 621–655 (2008)CrossRefGoogle Scholar
  19. 19.
    Zhu, C., Zheng, C., Shu, L., Han, G.: A survey on coverage and connectivity issues in wireless sensor networks. J. Netw. Comput. Appl. 35(2), 619–632 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Ahmed Boubrima
    • 1
  • Walid Bechkit
    • 1
  • Hervé Rivano
    • 1
  • Lionel Soulhac
    • 2
  1. 1.Univ Lyon, Inria, INSA Lyon, CITIVilleurbanneFrance
  2. 2.LMFAUniv Lyon, CNRS UMR 5509 ECL, INSA Lyon, Univ Claude BernardEcullyFrance

Personalised recommendations