Advertisement

Pathophysiology of Vascular Cognitive Impairment (II): Amyloid Contribution in Vascular Cognitive Impairment

  • Ho Ko
  • Bonnie Yin Ka Lam
  • Vincent Chung Tong MokEmail author
Chapter
  • 17 Downloads
Part of the Stroke Revisited book series (STROREV)

Abstract

Both clinical and preclinical evidences have emerged over the past two decades supporting a strong relationship between vascular risk factors and Alzheimer’s disease (AD). Vascular risk factors can induce silent cerebrovascular lesions that lower the threshold of dementia in subjects with AD pathology, and/or it may directly induce the development of AD pathology mediated by neurovascular unit dysfunction. Given vascular risk factors are also associated with stroke, recent studies utilizing in vivo amyloid PET also investigated the role of AD pathology in stroke and poststroke dementia. These studies found that AD pathology can be found in about 30% of patients with poststroke dementia. Its presence significantly lowers the threshold for developing dementia if a stroke occurs and is associated with a rapid cognitive decline in the long term after stroke. Understanding the above relationships between vascular risk factors, AD, and stroke has important implications in the prevention and treatment of AD and vascular cognitive impairment.

References

  1. 1.
    Jack CR, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Román GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia. Diagnostic criteria for research studies: report of the NINDS-AIREN International Workshop. Neurology. 1993;43(2):250–60.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sachdev P, Kalaria R, O’Brien J, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord. 2014;28(3):206–18.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Morimatsu M, Hirai S, Muramatsu A, et al. Senile degenerative brain lesions and dementia. J Am Geriatr Soc. 1975;23(9):390–406.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Mok V, Leung EYL, Chu W, et al. Pittsburgh compound B binding in poststroke dementia. J Neurol Sci. 2010;290(1–2):135–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kivipelto M, Helkala E-L, Laakso MP, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ. 2001;322(7300):1447–51.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Skoog I, Nilsson L, Persson G, et al. 15-year longitudinal study of blood pressure and dementia. Lancet. 1996;347(9009):1141–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Launer LJ, Ross GW, Petrovitch H, et al. Midlife blood pressure and dementia: the Honolulu–Asia aging study. Neurobiol Aging. 2000;21(1):49–55.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ott A, Stolk R, Hofman A, et al. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia. 1996;39(11):1392–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Leibson CL, Rocca WA, Hanson V, et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol. 1997;145(4):301–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Gustafson D, Rothenberg E, Blennow K, et al. An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med. 2003;163(13):1524–8.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ott A, Slooter A, Hofman A, et al. Smoking and risk of dementia and Alzheimer’s disease in a population-based cohort study: the Rotterdam Study. Lancet. 1998;351(9119):1840–3.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Neuropathology Group, Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet. 2001;357(9251):169–75.CrossRefGoogle Scholar
  15. 15.
    Schneider JA, Arvanitakis Z, Bang W, et al. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197–204.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Snowdon DA, Greiner LH, Mortimer JA, et al. Brain infarction and the clinical expression of Alzheimer disease: the Nun Study. JAMA. 1997;277(10):813–7.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Schneider J, Wilson R, Bienias J, et al. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology. 2004;62(7):1148–55.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Petrovitch H, White L, Izmirilian G, et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Neurobiol Aging. 2000;21(1):57–62.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gottesman RF, Albert MS, Alonso A, et al. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) cohort. JAMA Neurol. 2017;74(10):1246–54.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Iturria-Medina Y, Sotero R, Toussaint P, et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun. 2016;7:11934.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Norton S, Matthews FE, Barnes DE, et al. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19(6):771–83.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Attwell D, Buchan AM, Charpak S, et al. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hall CN, Reynell C, Gesslein B, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mishra A, Reynolds JP, Chen Y, et al. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci. 2016;19(12):1619–27.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sengillo J, Winkler E, Walker C, et al. Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013;23(3):303–10.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61.CrossRefGoogle Scholar
  28. 28.
    Daneman R, Zhou L, Kebede A, et al. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kisler K, Nelson AR, Rege SV, et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci. 2017;20(3):406–16.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Montagne A, Nikolakopoulou AM, Zhao Z, et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med. 2018;24(3):326–37.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Samir K-S, Pirici D, Eileen M, et al. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am J Pathol. 2005;167(2):527–43.CrossRefGoogle Scholar
  32. 32.
    Winkler E, Nishida Y, Sagare A, et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18(4):521–30.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ujiie M, Dickstein DL, Carlow DA, et al. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation. 2003;10(6):463–70.PubMedGoogle Scholar
  34. 34.
    Paul J, Strickland S, Melchor J. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer’s disease. J Exp Med. 2007;204(8):1999–2008.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cirrito J, Deane R, Fagan A, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115(11):3285–90.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sagare AP, Bell RD, Zhao Z, et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun. 2013;4(1):2932.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Verbeek MM, Waal RM, Schipper JJ, et al. Rapid degeneration of cultured human brain pericytes by amyloid β protein. J Neurochem. 1997;68(3):1135–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science. 2019;365(6450):eaav9518. https://science.sciencemag.org/content/365/6450/eaav9518.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011;10(3):241–52.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Liu C-C, Zhao N, Fu Y, et al. ApoE4 accelerates early seeding of amyloid pathology. Neuron. 2017;96(5):1024–32.e3.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Shi Y, Yamada K, Liddelow S, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ali H-M, Thomas KL, Wagner DD. ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am J Physiol Cell Physiol. 2007;292(4):C1256–62.CrossRefGoogle Scholar
  43. 43.
    Bell RD, Winkler EA, Singh I, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485(7399):512–6.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Halliday MR, Rege SV, Ma Q, et al. Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Bloow Flow Metab. 2015;36(1):216–27.CrossRefGoogle Scholar
  45. 45.
    Methia N, André P, Hafezi-Moghadam A, et al. ApoE deficiency compromises the blood brain barrier especially after injury. Mol Med. 2001;7(12):810–5.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Østergaard L, Engedal TS, Moreton F, et al. Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab. 2016;36(2):302–25.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kisler K, Nelson AR, Montagne A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017;18(7):419–34.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8(11):1006–18.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jokinen H, Melkas S, Ylikoski R, et al. Post-stroke cognitive impairment is common even after successful clinical recovery. Eur J Neurol. 2015;22(9):1288–94.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mok VCT, Lam BYK, Wong A, et al. Early-onset and delayed-onset poststroke dementia—revisiting the mechanisms. Nat Rev Neurol. 2017;13:148–59.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Erkinjuntti T, Haltia M, Palo J, et al. Accuracy of the clinical diagnosis of vascular dementia: a prospective clinical and post-mortem neuropathological study. J Neurol Neurosurg Psychiatry. 1988;51(8):1037–44.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Knopman DS, Parisi JE, Boeve BF, et al. Vascular dementia in a population-based autopsy study. Arch Neurol. 2003;60(4):569–75.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Allan LM, Rowan EN, Firbank MJ, et al. Long term incidence of dementia, predictors of mortality and pathological diagnosis in older stroke survivors. Brain. 2011;134(12):3716–27.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Nolan KA, Lino MM, Seligmann Arthur W, et al. Absence of vascular dementia in an autopsy series from a dementia clinic. J Am Geriatr Soc. 2015;46(5):597–604.CrossRefGoogle Scholar
  55. 55.
    Mok VC, Lam BY, Wang Z, et al. Delayed-onset dementia after stroke or transient ischemic attack. Alzheimers Dement. 2016;12(11):1167–76.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Shim YS, Roe CM, Buckles VD, et al. Clinicopathologic study of Alzheimer’s disease: Alzheimer mimics. J Alzheimers Dis. 2013;35(4):799–811.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kaerst L, Kuhlmann A, Wedekind D, et al. Cerebrospinal fluid biomarkers in Alzheimer’s disease, vascular dementia and ischemic stroke patients: a critical analysis. J Neurol. 2013;260(11):2722–7.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Yang J, Wong A, Wang Z, et al. Risk factors for incident dementia after stroke and transient ischemic attack. Alzheimers Dement. 2015;11(1):16–23.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Liu W, Wong A, Au L, et al. Influence of amyloid-β on cognitive decline after stroke/transient ischemic attack: three-year longitudinal study. Stroke. 2015;46(11):3074–80.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Jansen W, Ossenkoppele R, Knol D, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313(19):1924–38.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wollenweber FA, Därr S, Müller C, et al. Prevalence of amyloid positron emission tomographic positivity in poststroke mild cognitive impairment. Stroke. 2016;47(10):2645–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sahathevan R, Linden T, Villemagne VL, et al. Positron emission tomographic imaging in stroke: cross-sectional and follow-up assessment of amyloid in ischemic stroke. Stroke. 2016;47(1):113–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    van der Flier WM, Skoog I, Schneider JA, et al. Vascular cognitive impairment. Nat Rev Dis Primers. 2018;4:18003.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2020

Authors and Affiliations

  • Ho Ko
    • 1
    • 2
    • 3
    • 4
  • Bonnie Yin Ka Lam
    • 1
    • 4
  • Vincent Chung Tong Mok
    • 1
    • 4
    Email author
  1. 1.Department of Medicine and TherapeuticsPrince of Wales Hospital, The Chinese University of Hong KongHong KongChina
  2. 2.Li Ka Shing Institute of Health Sciences, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
  3. 3.Chow Yuk Ho Technology Center for Innovative Medicine, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
  4. 4.Therese Pei Fong Chow Research Centre for Prevention of Dementia, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Margaret K. L. Cheung Research Centre for Management of ParkinsonismThe Chinese University of Hong KongHong KongChina

Personalised recommendations