Pathophysiology of Vascular Cognitive Impairment (I): Theoretical Background

  • Di YuEmail author
  • Walter Swardfager
  • Sandra E. Black
Part of the Stroke Revisited book series (STROREV)


Vascular cognitive impairment (VCI) describes a spectrum of cognitive changes occurring secondary to damage of the large and small vessels that supply blood to the brain. VCI has been recognized as the second most common cause of dementia and as the most common pathological comorbidity of Alzheimer’s disease. The pathogenesis of VCI appears to be heterogeneous, involving neurodegenerative mechanisms that remain to be fully understood. Stroke and vascular risk factors interfere with many processes subserved by the cerebral vasculature, maintaining cerebral homeostasis (for instance, maintaining and augmenting blood flow, oxygen, glucose supply), providing a structural and chemical barrier between the peripheral circulation and the brain parenchyma, serving intricate immunological functions, and providing a neurogenic niche for brain tissue repair. This chapter discusses the known and theoretical pathophysiological background of VCI, focusing on stroke and disruption of the neurovascular unit (NVU), which contribute to defects in neurotransmitter systems and to disruption of large-scale functionally co-activating networks, which contributes to cognitive deficits and decline.



We would like to gratefully acknowledge the support from our colleagues, Sabrina Adamo and Fuqiang Gao from Sunnybrook Research Institute, for their contribution to the processing and labeling of the MR images. W.S. gratefully acknowledges support from the Alzheimer’s Association (US), Brain Canada, The Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre Department of Psychiatry, Sunnybrook Research Institute Hurvitz Brain Sciences Program, and the University of Toronto Department of Pharmacology and Toxicology. S.E.B. gratefully acknowledges financial and salary support from the Fondation Leducq, Canadian Institutes of Health Research (#125740 & #13129), Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program at Sunnybrook Research Institute, and the Linda C. Campbell Foundation. S.E.B. would also like to thank the Sunnybrook Research Institute, Sunnybrook Health Sciences Centre Department of Medicine, and the Brill Chair Neurology, University of Toronto, for financial and salary support.


  1. 1.
    Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80(4):844–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Ramirez J, Berezuk C, McNeely AA, et al. Imaging the perivascular space as a potential biomarker of neurovascular and neurodegenerative diseases. Cell Mol Neurobiol. 2016;36(2):289–99.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Chung C-P, Chou K-H, Chen W-T, et al. Strictly lobar cerebral microbleeds are associated with cognitive impairment. Stroke. 2016;47(10):2497–502.PubMedCrossRefGoogle Scholar
  5. 5.
    Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723–38.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Marnane M, Al-Jawadi OO, Mortazavi S, et al. Periventricular hyperintensities are associated with elevated cerebral amyloid. Neurology. 2016;86(6):535–43.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Makedonov I, Black SE, MacIntosh BJ. Cerebral small vessel disease in aging and Alzheimer’s disease: a comparative study using MRI and SPECT. Eur J Neurol. 2013;20(2):243–50.PubMedCrossRefGoogle Scholar
  8. 8.
    MacIntosh BJ, Swardfager W, Robertson AD, et al. Regional cerebral arterial transit time hemodynamics correlate with vascular risk factors and cognitive function in men with coronary artery disease. Am J Neuroradiol. 2015;36(2):295–301.PubMedCrossRefGoogle Scholar
  9. 9.
    Keith J, Gao FQ, Noor R, et al. Collagenosis of the deep medullary veins: an underrecognized pathologic correlate of white matter hyperintensities and periventricular infarction? J Neuropathol Exp Neurol. 2017;76(4):299–312.PubMedCrossRefGoogle Scholar
  10. 10.
    Kisler K, Nelson AR, Montagne A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017;18(7):419–34.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kisler K, Nelson AR, Rege SV, et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci. 2017;20(3):406–16.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Yemisci M, Gursoy-Ozdemir Y, Vural A, et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15(9):1031–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Swardfager W, Yu D, Scola G, et al. Peripheral lipid oxidative stress markers are related to vascular risk factors and subcortical small vessel disease. Neurobiol Aging. 2017;59:91–7.PubMedCrossRefGoogle Scholar
  14. 14.
    van Exel E, de Craen AJM, Remarque EJ, et al. Interaction of atherosclerosis and inflammation in elderly subjects with poor cognitive function. Neurology. 2003;61(12):1695–701.PubMedCrossRefGoogle Scholar
  15. 15.
    Toth P, Tucsek Z, Tarantini S, et al. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab. 2014;34(12):1887–97.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rosenberg GA. Extracellular matrix inflammation in vascular cognitive impairment and dementia. Clin Sci. 2017;131(6):425–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Saggu R, Schumacher T, Gerich F, et al. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun. 2016;4(1):76.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cai M, Lee JH, Yang EJ. Bee venom ameliorates cognitive dysfunction caused by neuroinflammation in an animal model of vascular dementia. Mol Neurobiol. 2017;54(8):5952–60.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Swardfager W, Winer DA, Herrmann N, et al. Interleukin-17 in post-stroke neurodegeneration. Neurosci Biobehav Rev. 2013;37(3):436–47.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kim J-Y, Kim N, Yenari MA. Mechanisms and potential therapeutic applications of microglial activation after brain injury. CNS Neurosci Ther. 2015;21(4):309–19.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Choi SS, Lee HJ, Lim I, et al. Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One. 2014;9(4):e92325.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment: a critical update. Front Aging Neurosci. 2013;5:17.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Muir RT, Lam B, Honjo K, et al. Trail making test elucidates neural substrates of specific poststroke executive dysfunctions. Stroke. 2015;46(10):2755–61.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Liu Q, Zhu Z, Teipel SJ, et al. White matter damage in the cholinergic system contributes to cognitive impairment in subcortical vascular cognitive impairment, no dementia. Front Aging Neurosci. 2017;9:47.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Gao F, Pettersen JA, Bocti C, et al. Is encroachment of the carotid termination into the substantia innominata associated with its atrophy and cognition in Alzheimer’s disease? Neurobiol Aging. 2013;34(7):1807–14.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol. 2016;131(5):659–85.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Black S, Roman GC, Geldmacher DS, et al. Efficacy and tolerability of donepezil in vascular dementia: positive results of a 24-week, multicenter, international, randomized, placebo-controlled clinical trial. Stroke. 2003;34(10):2323–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Lim J-S, Kim N, Jang MU, et al. Cortical hubs and subcortical cholinergic pathways as neural substrates of poststroke dementia. Stroke. 2014;45(4):1069–76.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    McNeely AA, Ramirez J, Nestor SM, et al. Cholinergic subcortical hyperintensities in Alzheimer’s disease patients from the Sunnybrook Dementia Study: relationships with cognitive dysfunction and hippocampal atrophy. J Alzheimers Dis. 2015;43(3):785–96.PubMedCrossRefGoogle Scholar
  31. 31.
    Lanctôt KL, O’Regan J, Schwartz Y, et al. Assessing cognitive effects of anticholinergic medications in patients with coronary artery disease. Psychosomatics. 2014;55(1):61–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Kirvell SL, Elliott MS, Kalaria RN, et al. Vesicular glutamate transporter and cognition in stroke: a case-control autopsy study. Neurology. 2010;75(20):1803–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mijajlović MD, Pavlović A, Brainin M, et al. Post-stroke dementia—a comprehensive review. BMC Med. 2017;15(1):11.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gold AB, Herrmann N, Swardfager W, et al. The relationship between indoleamine 2,3-dioxygenase activity and post-stroke cognitive impairment. J Neuroinflammation. 2011;8(1):17.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Rezvani AH. Involvement of the NMDA system in learning and memory. In: Levin ED, Buccafusco JJ, editors. Animal models of cognitive impairment. Boca Raton, FL: CRC Press/Taylor & Francis; 2006.Google Scholar
  36. 36.
    Palomar FJ, Suarez A, Franco E, et al. Abnormal sensorimotor plasticity in CADASIL correlates with neuropsychological impairment. J Neurol Neurosurg Psychiatry. 2013;84(3):329–36.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. NeuroImage. 2006;31(2):496–504.PubMedCrossRefGoogle Scholar
  38. 38.
    Sun Y, Qin L, Zhou Y, et al. Abnormal functional connectivity in patients with vascular cognitive impairment, no dementia: a resting-state functional magnetic resonance imaging study. Behav Brain Res. 2011;223(2):388–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Yi L, Wang J, Jia L, et al. Structural and functional changes in subcortical vascular mild cognitive impairment: a combined voxel-based morphometry and resting-state fMRI study. PLoS One. 2012;7(9):e44758.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Broyd SJ, Demanuele C, Debener S, et al. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33(3):279–96.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Fernández PJ, Campoy G, García Santos JM, et al. Is there a specific pattern of attention deficit in mild cognitive impairment with subcortical vascular features? Evidence from the attention network test. Dement Geriatr Cogn Disord. 2011;31(4):268–75.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Silbert LC, Nelson C, Howieson DB, et al. Impact of white matter hyperintensity volume progression on rate of cognitive and motor decline. Neurology. 2008;71(2):108–13.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Biesbroek JM, Weaver NA, Hilal S, et al. Impact of strategically located white matter hyperintensities on cognition in memory clinic patients with small vessel disease. PLoS One. 2016;11(11):e0166261.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ishikawa H, Meguro K, Ishii H, et al. Silent infarction or white matter hyperintensity and impaired attention task scores in a nondemented population: the Osaki-Tajiri project. J Stroke Cerebrovasc Dis. 2012;21(4):275–82.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Santiago C, Herrmann N, Swardfager W, et al. White matter microstructural integrity is associated with executive function and processing speed in older adults with coronary artery disease. Am J Geriatr Psychiatry. 2015;23(7):754–63.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Teipel SJ, Bokde ALW, Meindl T, et al. White matter microstructure underlying default mode network connectivity in the human brain. NeuroImage. 2010;49(3):2021–32.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Tuladhar AM, Reid AT, Shumskaya E, et al. Relationship between white matter hyperintensities, cortical thickness, and cognition. Stroke. 2015;46(2):425–32.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Nestor SM, Mišić B, Ramirez J, et al. Small vessel disease is linked to disrupted structural network covariance in Alzheimer’s disease. Alzheimers Dement. 2017;13(7):749–60.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Swardfager W, Cogo-Moreira H, Masellis M, et al. The effect of white matter hyperintensities on verbal memory; mediation by temporal lobe atrophy. Neurology. 2018;90(8):e673–82.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2020

Authors and Affiliations

  • Di Yu
    • 1
    • 2
    • 3
    • 4
    Email author
  • Walter Swardfager
    • 1
    • 2
    • 3
    • 4
    • 5
  • Sandra E. Black
    • 1
    • 3
    • 4
    • 5
    • 6
  1. 1.Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoCanada
  2. 2.Department of Pharmacology & ToxicologyUniversity of TorontoTorontoCanada
  3. 3.Canadian Partnership for Stroke RecoverySunnybrook Research InstituteTorontoCanada
  4. 4.LC Campbell Cognitive Neurology UnitSunnybrook Research InstituteTorontoCanada
  5. 5.University Health Network Toronto Rehabilitation InstituteTorontoCanada
  6. 6.Neurology Division, Department of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations