Advertisement

Pathophysiology of Subarachnoid Hemorrhage

  • Sook Young Sim
  • Yong Sam Shin
Chapter
Part of the Stroke Revisited book series (STROREV)

Abstract

Spontaneous subarachnoid hemorrhage (SAH) is an important cause of stroke. It is associated with high mortality and morbidity. SAH has differing hemorrhagic patterns, clinical course, prognosis, and therapeutic method, depending on the cause of the bleeding. The most common etiology of SAH is a rupture of an aneurysm arising at the intracranial artery. This chapter describes the underlying pathogenesis of aneurysmal formation, growth, and rupture. Not only the initial hemorrhage but also the ways in which pathophysiological processes following aneurysmal SAH may influence the complicated clinical course of survivors. Furthermore, the chapter discusses updated pathophysiology of post-hemorrhagic phenomena, including aneurysmal rebleeding, hydrocephalus, early brain injury, delayed cerebral ischemia, and medical complications. Finally, non-aneurysmal SAH is rare but is associated with diverse etiologies; the chapter summarizes proposed mechanisms of bleeding and clinical characteristics of non-aneurysmal SAH.

References

  1. 1.
    Andreasen TH, Bartek J Jr, Andresen M, et al. Modifiable risk factors for aneurysmal subarachnoid hemorrhage. Stroke. 2013;44:3607–12.CrossRefPubMedGoogle Scholar
  2. 2.
    Sehba FA, Hou J, Pluta RM, et al. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97:14–37.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid hemorrhage. Lancet. 2007;369:306–18.CrossRefPubMedGoogle Scholar
  4. 4.
    van Lieshout JH, Dibué-Adjei M, Cornelius JF et al (2017) An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurg Rev:  https://doi.org/10.1007/s10143-017-0827-y. [Epub ahead of print].
  5. 5.
    Boogaarts HD, van Lieshout JH, van Amerongen MJ, et al. Aneurysm diameter as a risk factor for pretreatment rebleeding: a meta-analysis. J Neurosurg. 2015;122:921–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Can A, Du R. Association of hemodynamic factors with intracranial aneurysm formation and rupture: systematic review and meta-analysis. Neurosurgery. 2016;78:510–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Kassam AB, Horowitz M, Chang YF, et al. Altered arterial homeostasis and cerebral aneurysms: a molecular epidemiology study. Neurosurgery. 2004;54:1450–60.CrossRefPubMedGoogle Scholar
  8. 8.
    Meng H, Wang Z, Hoi Y, et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke. 2007;38:1924–31.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Skirgaudas M, Awad IA, Kim J, et al. Expression of angiogenesis factors and selected vascular wall matrix proteins in intracranial saccular aneurysms. Neurosurgery. 1996;39:537–47.PubMedGoogle Scholar
  10. 10.
    Xiang J, Tutino VM, Snyder KV, et al. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. Am J Neuroradiol. 2014;35:1849–57.CrossRefPubMedGoogle Scholar
  11. 11.
    Wiebers DO, Whisnant JP, Huston J III, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nahed BV, Bydon M, Ozturk AK, et al. Genetics of intracranial aneurysms. Neurosurgery. 2007;60:213–25.CrossRefPubMedGoogle Scholar
  13. 13.
    Peters DG, Kassam A, St. Jean PL, et al. Functional polymorphism in the matrix metalloproteinase-9 promoter as a potential risk factor for intracranial aneurysm. Stroke. 1999;30:2612–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Hussain I, Duffis EJ, Gandhi CD, et al. Genome-wide association studies of intracranial aneurysms: an update. Stroke. 2013;44:2670–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Larsen CC, Astrup J. Rebleeding after aneurysmal subarachnoid hemorrhage: a literature review. World Neurosurg. 2012;79:307–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Bridinski W, Zhu YQ, Lanzino G, et al. Risk factors for growth of intracranial aneurysms: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2016;37:615–20.CrossRefGoogle Scholar
  17. 17.
    Villablanca JP, Duckwiler GR, Jahan R, et al. Natural history of asymptomatic unruptured cerebral aneurysms evaluated at CT angiography: growth and rupture incidence and correlation with epidemiologic risk factors. Radiology. 2013;269:258–65.CrossRefPubMedGoogle Scholar
  18. 18.
    Beckes D, Rinkel GJ, Laban KG, et al. Patient- and aneurysm-specific risk factors for intracranial aneurysm growth. A systematic review and meta-analysis. Stroke. 2016;47:951–7.CrossRefGoogle Scholar
  19. 19.
    Juvela S, Poussa K, Porras M. Factors affecting formation and growth of intracranial aneurysms: a long-term follow-up study. Stroke. 2001;32:485–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Morita A, Kirino T, Hashi K, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. New Engl J Med. 2012;366:2474–82.CrossRefPubMedGoogle Scholar
  21. 21.
    Wermer MJ, van der Schaaf IC, Algra A, et al. Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke. 2007;38:1404–10.CrossRefPubMedGoogle Scholar
  22. 22.
    Guo LM, Zhou HY, Xu JW, et al. Risk factors related to aneurysmal rebleeding. World Neurosurg. 2011;76:292–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Tanno Y, Homma M, Oinuma M, et al. Rebleeding from ruptured intracranial aneurysms in north Eastern Province of Japan. A cooperative study. J Neurol Sci. 2007;258:11–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Aoyagi N, Hayakawa I. Study on early re-rupture of intracranial aneurysms. Acta Neurochir. 1996;138:12–8.CrossRefPubMedGoogle Scholar
  25. 25.
    van Asch CJ, van der Schaaf IC, Rinkel GJ. Acute hydrocephalus and cerebral perfusion after aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2010;31:67–70.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen S, Luo J, Reis C, et al. Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment. Biomed Res Int. 2017;2017:8584753.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Wilson CD, Safavi-Abbasi S, Sun H, et al. Meta-analysis and systematic review of risk factors for shunt dependency after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2017;126:586–95.CrossRefPubMedGoogle Scholar
  28. 28.
    Yolas C, Ozdemir NG, Kanat A, et al. Uncovering a new cause of obstructive hydrocephalus following subarachnoid hemorrhage: choroidal artery vasospasm-related ependymal cell degeneration and aqueductal stenosis-first experimental study. World Neurosurg. 2016;90:484–91.CrossRefPubMedGoogle Scholar
  29. 29.
    Foreman B. The pathophysiology of delayed cerebral ischemia. J Clin Neurophysiol. 2016;33:174–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Kanat A, Turkmenoglu O, Aydin MD, et al. Toward changing of the pathophysiologic basis of acute hydrocephalus after subarachnoid hemorrhage: a preliminary experimental study. World Neurosurg. 2013;34:390–5.CrossRefGoogle Scholar
  31. 31.
    Vergouwen MD, Vermeulen M, van Gijn J, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41:2391–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Zheng VZ, Wong GK. Neuroinflammation responses after subarachnoid hemorrhage: a review. J Clin Neurosci. 2017;42:7–11.CrossRefPubMedGoogle Scholar
  33. 33.
    Ecker A, Riemenschneider PA. Arteriographic demonstration of spasm of the intracranial arteries, with special reference to saccular arterial aneurysms. J Neurosurg. 1951;8:660–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6:1–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Dhar R, Diringer MN. The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care. 2008;8:404–12.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dreier JP, Woitzik J, Fabricius M, et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain. 2006;129:3224–37.CrossRefPubMedGoogle Scholar
  37. 37.
    Dreier JP, Major S, Manning A, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain. 2009;132:1866–81.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Friedman JA, Pichelmann MA, Piepgras DG, et al. Pulmonary complications of aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003;52:1025–31.PubMedGoogle Scholar
  39. 39.
    Kerro A, Woods T, Chang JJ. Neurogenic stunned myocardium in subarachnoid hemorrhage. J Crit Care. 2017;38:27–34.CrossRefPubMedGoogle Scholar
  40. 40.
    Yoshimoto Y, Tanaka Y, Hoya K. Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke. 2001;32:1989–93.CrossRefPubMedGoogle Scholar
  41. 41.
    Kapadia A, Schweizer TA, Spears J, et al. Nonaneurysmal perimesencephalic subarachnoid hemorrhage: diagnosis, pathophysiology, clinical characteristics, and long-term outcome. World Neurosurg. 2014;82:1131–43.CrossRefPubMedGoogle Scholar
  42. 42.
    Rouchaud A, Lehman VT, Murad MH, et al. Nonaneurysmal perimesencephalic hemorrhage is associated with deep cerebral venous drainage anomalies: a systematic literature review and meta-analysis. AJNR Am J Neuroradiol. 2016;37:1657–63.CrossRefPubMedGoogle Scholar
  43. 43.
    Hui F, Tumialán L, Tanaka T, et al. Clinical differences between angiographically negative, diffuse subarachnoid hemorrhage and perimesencephalic subarachnoid hemorrhage. Neurocrit Care. 2009;11:64–70.CrossRefPubMedGoogle Scholar
  44. 44.
    Kumar S, Goddeau RP Jr, Selim MH, et al. Atraumatic convexal subarachnoid hemorrhage: clinical presentation, imaging patterns, and etiologies. Neurology. 2010;74:893–9.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Naidech AM, Rosenberg NF, Maas MB, et al. Predictors of hemorrhage volume and disability after perimesencephalic subarachnoid hemorrhage. Neurology. 2012;78:811–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Beitzke M, Gattringer T, Enzinger C, et al. Clinical presentation, etiology, and long-term prognosis in patients with nontraumatic convexal subarachnoid hemorrhage. Stroke. 2011;42:3055–60.CrossRefPubMedGoogle Scholar
  47. 47.
    Boukobza M, Crassard I, Bousser MG, et al. Radiological findings in cerebral venous thrombosis presenting as subarachnoid hemorrhage: a series of 22 cases. Neuroradiology. 2016;58:11–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Ducros A, Boukobza M, Porcher R, et al. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome. A prospective series of 67 patients. Brain. 2007;130:3091–101.CrossRefPubMedGoogle Scholar
  49. 49.
    Matsumaru Y, Yanaka K, Muroi A, et al. Significance of a small bulge on the basilar artery in patients with perimesencephalic nonaneurysmal subarachnoid hemorrhage: report of two cases. J Neurosurg. 2003;98:426–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Park SQ, Bae HG, Yoon SM, et al. Morphological characteristics of the Thalamoperforating arteries. J Korean Neurosurg Soc. 2010;47:36–41.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Takeda S, Yamazaki K, Miyakawa T, et al. Cerebral amyloid angiopathy initially occurs in the meningeal vessels. Neuropathology. 2017;37:502–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Etminan N, Dreier R, Buchholz BA, et al. Age of collagen in intracranial saccular aneurysms. Stroke. 2014;45:1757–63.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2018

Authors and Affiliations

  • Sook Young Sim
    • 1
  • Yong Sam Shin
    • 2
  1. 1.Department of NeurosurgeryCollege of Medicine, Seoul Paik Hospital, Inje UniversitySeoulSouth Korea
  2. 2.Department of NeurosurgeryCollege of Medicine, Seoul St. Mary’s Hospital, The Catholic University of KoreaSeoulSouth Korea

Personalised recommendations