Advertisement

EABR of Inner Ear Malformation and Cochlear Nerve Deficiency After Cochlear Implantation in Children

  • Shujiro MinamiEmail author
  • Kimitaka Kaga
Chapter
Part of the Modern Otology and Neurotology book series (MODOTOL)

Abstract

When cochlear implantation has been performed in a case involving inner ear malformations, it is particularly important to perform objective physiological measurements of the cochlear implant. The inner ear malformations can be divided into categories according to the observation of modiolus deficiency and/or cochlear nerve deficiency (CND). CND severity can be categorized in one of three ways, according to the MRI findings: (1) a hypoplastic cochlear nerve, (2) the absence of cochlear nerve, and (3) the absence of vestibulocochlear nerve. EABR is a reliable and effective way of objectively confirming device function and implant responsiveness of the peripheral auditory neurons up to the level of the brainstem in cases of inner ear malformation. EABR can often be recorded in cases in which the presence of excessive stimulus artifacts precludes the successful acquisition of ECAP, such as in cases with modiolus deficiency cochlea. This chapter presents cases with or without modiolus deficiency, depending on the severity of cochlear nerve deficiency, and describes their EABR characteristics. Vestibular simulated EABR is also shown, demonstrating the interactions between vestibular and auditory pathways.

Keywords

EABR Modiolus deficiency Cochlear nerve deficiency 

References

  1. 1.
    Carlson ML, Archibald DJ, Dabade TS, Gifford RH, Neff BA, Beatty CW, et al. Prevalence and timing of individual cochlear implant electrode failures. Otol Neurotol. 2010;31(6):893–8. doi: 10.1097/MAO.0b013e3181d2d697.CrossRefPubMedGoogle Scholar
  2. 2.
    Lorens A, Walkowiak A, Piotrowska A, Skarzynski H, Anderson I. ESRT and MCL correlations in experienced paediatric cochlear implant users. Cochlear Implants Int. 2004;5(1):28–37. doi: 10.1002/cii.121.CrossRefPubMedGoogle Scholar
  3. 3.
    Botros A, Psarros C. Neural response telemetry reconsidered: I. The relevance of ECAP threshold profiles and scaled profiles to cochlear implant fitting. Ear Hear. 2010;31(3):367–79. doi: 10.1097/AUD.0b013e3181c9fd86.CrossRefPubMedGoogle Scholar
  4. 4.
    Bierer JA, Faulkner KF, Tremblay KL. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration. Ear Hear. 2011;32(4):436–44. doi: 10.1097/AUD.0b013e3181ff33ab.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Miller AL, Arenberg JG, Middlebrooks JC, Pfingst BE. Cochlear implant thresholds: comparison of middle latency responses with psychophysical and cortical-spike-activity thresholds. Hear Res. 2001;152(1–2):55–66.CrossRefPubMedGoogle Scholar
  6. 6.
    Beynon AJ, Snik AF, van den Broek P. Evaluation of cochlear implant benefit with auditory cortical evoked potentials. Int J Audiol. 2002;41(7):429–35.CrossRefPubMedGoogle Scholar
  7. 7.
    Firszt JB, Chambers RD. Kraus, Reeder RM. Neurophysiology of cochlear implant users I: effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response. Ear Hear. 2002;23(6):502–15. doi: 10.1097/01.AUD.0000042153.40602.54.CrossRefPubMedGoogle Scholar
  8. 8.
    Minami SB, Takegoshi H, Shinjo Y, Enomoto C, Kaga K. Usefulness of measuring electrically evoked auditory brainstem responses in children with inner ear malformations during cochlear implantation. Acta Otolaryngol. 2015;135(10):1007–15. doi: 10.3109/00016489.2015.1048377.CrossRefPubMedGoogle Scholar
  9. 9.
    Smith PF. Interactions between the vestibular nucleus and the dorsal cochlear nucleus: implications for tinnitus. Hear Res. 2012;292(1–2):80–2. doi: 10.1016/j.heares.2012.08.006.CrossRefPubMedGoogle Scholar
  10. 10.
    Barker M, Solinski HJ, Hashimoto H, Tagoe T, Pilati N, Hamann M. Acoustic overexposure increases the expression of VGLUT-2 mediated projections from the lateral vestibular nucleus to the dorsal cochlear nucleus. PLoS One. 2012;7(5), e35955. doi: 10.1371/journal.pone.0035955.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Division of OtolaryngologyNational Tokyo Medical CenterTokyoJapan
  2. 2.National Institute of Sensory OrgansNational Tokyo Medical CenterTokyoJapan
  3. 3.Center for Speech and Hearing DisordersInternational University of Health and Welfare ClinicOhtawaraJapan

Personalised recommendations