Advertisement

Atomistic Modeling and Simulation for Solving Gas Extraction Problems

  • Genri E. Norman
  • Vasily V. PisarevEmail author
  • Grigory S. Smirnov
  • Vladimir V. Stegailov
Chapter
Part of the Molecular Modeling and Simulation book series (MMAS)

Abstract

Proof-of-concept results are presented on the application of molecular modeling and simulation to the gas extraction problems. Both hydrocarbon mixtures and gas hydrates in porous media are considered. Retrograde gas condensation reduces the amount of recoverable gas in reservoirs and can lead to jamming of wells. For example, the authors [1] developed a model of two-phase gas filtration through porous media that can reproduce the jamming. The model can describe gas flow in soil of reservoir if both a phase diagram of the gas mixture and permeability of pores to gaseous and liquid phases are known. Molecular dynamics simulations are used to study phase diagrams of binary hydrocarbon mixtures at temperatures between the critical points of pure components. The phase diagrams in free space and in slit pores are calculated. Effects of wall–gas interaction on the phase diagram are estimated. The data obtained from molecular simulations can be used to improve the hydrodynamic filtration model and to optimize the natural gas and gas condensate extraction conditions. Effects of pore structure on the phase stability of gas hydrates and on the diffusion of guest molecules are studied by means of molecular modeling. The anisotropic diffusion is found in hydrogen hydrates. Moreover, diffusivity of hydrogen molecules demonstrates anomalous behavior on nanosecond timescale.

Keywords

Phase diagrams Methane Molecular dynamics Clathrate hydrates Retrograde condensation Porosity 

Notes

Acknowledgments

The work is supported by the Russian Science Foundation grant 14-50-00124. The authors are thankful to prof. V.M. Zaichenko, who paid our attention to connection of our nucleation study with natural gas condensates modeling and to Drs V.V. Kachalov and V.M. Torchinskii for their interest to the work and valuable discussions.

References

  1. 1.
    Zaichenko, V.M., Maikov, I.L., Torchinskii, V.M., Shpil’rain, E.E.: Simulation of processes of filtration of hydrocarbons in a gas-condensate stratum. High Temp. 47, 669-674 (2009)Google Scholar
  2. 2.
    Direktor, L.B., Zaichenko, V.M., Maikov, I.L., et al.: Theoretical and experimental studies of hydrodynamics and heat exchange in porous media. High Temp. 48, 887–895 (2010)CrossRefGoogle Scholar
  3. 3.
    Sage, B.H., Hicks, B.L., Lacey, W.N.: Phase equilibria in hydrocarbon systems. The methane-n-butane system in the two-phase region. Ind. Eng. Chem. 32, 1085 (1940)CrossRefGoogle Scholar
  4. 4.
    Muhlbauer, A.: Phase Equilibria: Measurement and Computation. CRC press (1997)Google Scholar
  5. 5.
    Kahre, L.C.: Low-temperature K data for methane-n-butane. J. Chem. Eng. Data 19, 67–71 (1974)CrossRefGoogle Scholar
  6. 6.
    Elliott, D.G., Chen, R.J.J., Chappelear, P.S., Kobayashi, R.: Vapor-liquid equilibrium of methane-n-butane system at low temperatures and high pressures. J. Chem. Eng. Data 19, 71–77 (1974)CrossRefGoogle Scholar
  7. 7.
    Norman, G.E., Stegailov, V.V.: Stochastic theory of the classical molecular dynamics method. Math. Models Comput. Simul. 5, 305–333 (2013)CrossRefGoogle Scholar
  8. 8.
    Rapaport, D.C.: The art of molecular dynamics simulation, 2nd edn. Cambridge University Press (2004)Google Scholar
  9. 9.
    Frenkel, D., Smit, B.: Understanding molecular simulation: from algorithms to applications. Academic Press (2002)Google Scholar
  10. 10.
    Norman, G.E., Filinov, V.S.: Investigation of phase transitions by a Monte-Carlo method. High Temp. 7, 216–222 (1969)Google Scholar
  11. 11.
    Panagiotopoulos, A.Z.: Direct determination of phase coexistence properties of fluids by Monte Carlo simulations in a new ensemble. Mol. Phys. 61, 813–826 (1987)CrossRefGoogle Scholar
  12. 12.
    Kofke, D.A., Glandt, E.D.: Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Mol. Phys. 64, 1105–1131 (1988)CrossRefGoogle Scholar
  13. 13.
    Mehta, M., Kofke, D.A.: Coexistence diagrams of mixtures by molecular simulation. Chem. Eng. Sci. 49, 2633–2645 (1994)CrossRefGoogle Scholar
  14. 14.
    Kaneko, T., Mima, T., Yasuoka, K.: Phase diagram of Lennard-Jones fluid confined in slit pores. Chem. Phys. Lett. 490, 165–171 (2010)CrossRefGoogle Scholar
  15. 15.
    Fomin, YuD: Molecular dynamics simulation of benzene in graphite and amorphous carbon slit pores. J. Comput. Chem. (2013). doi: 10.1002/jcc.23429 Google Scholar
  16. 16.
    Fomin, YuD, Tsiok, E.D., Ryzhov, V.N.: The behavior of benzene confined in single wall carbon nanotube. J. Comput. Chem. (2015). doi: 10.1002/jcc.23872 Google Scholar
  17. 17.
    Fomin, YuD, Tsiok, E.D., Ryzhov, V.N.: The behavior of cyclohexane confined in slit carbon nanopore. J. Chem. Phys. 143, 184702 (2015)CrossRefGoogle Scholar
  18. 18.
    Rudyak, V.Ya., Belkin, A.A., Egorov, V.V., Ivanov, D.A.: About fluids structure in microchannels. Int. J. Multiphys. 5, 145–155 (2011)Google Scholar
  19. 19.
    Rudyak, V.Ya., Belkin, A.A.: Fluid viscosity under confined conditions. Doklady Phys. 59, 604–606 (2014)Google Scholar
  20. 20.
    Johnston, K., Harmandaris, V.: Properties of benzene confined between two Au(111) surfaces using a combined density functional theory and classical molecular dynamics approach. J. Phys. Chem. C 115, 14707–14717 (2011)CrossRefGoogle Scholar
  21. 21.
    Moustafa, S.G., Schulz, A.J., Kofke, D.A.: Effects of finite size and proton disorder on lattice-dynamics estimates of the free energy of clathrate hydrates. Ind. Eng. Chem. Res. 54, 4487–4496 (2015)CrossRefGoogle Scholar
  22. 22.
    Skripov, V.P., Faizullin, M.Z.: Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity. Wiley-VCH, Berlin-Weinheim (2006)CrossRefGoogle Scholar
  23. 23.
    Strauss, H.L., Chen, Z., Loong, C.-K.: The diffusion of H2 in hexagonal ice at low temperatures. J. Chem. Phys. 101, 7177 (1994)CrossRefGoogle Scholar
  24. 24.
    Ildyakov, A.V., Manakov, A.Y.: Solubility of hydrogen in ice Ih at pressures up to 8 MPa. Int. J. Hydrogen Energy 39, 18958–18961 (2014)CrossRefGoogle Scholar
  25. 25.
    Alavi, S., Ripmeester, J.A.: Hydrogen-gas migration through clathrate hydrate cages. Angew. Chem. Int. Ed. Engl. 46, 6102–6105 (2007)CrossRefGoogle Scholar
  26. 26.
    Frankcombe, T.J., Kroes, G.-J.: Molecular dynamics simulations of type-sII hydrogen clathrate hydrate close to equilibrium conditions. J. Phys. Chem. C 111, 13044 (2007)CrossRefGoogle Scholar
  27. 27.
    Iwai, Y., Hirata, M.: Molecular dynamics simulation of diffusion of hydrogen in binary hydrogen–tetrahydrofuran hydrate. Mol. Simul. 38, 333–340 (2012)CrossRefGoogle Scholar
  28. 28.
    Gorman, P.D., English, N.J., MacElroy, J.M.D.: Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates. J. Chem. Phys. 136, 044506 (2012)CrossRefGoogle Scholar
  29. 29.
    Cao, H., English, N.J., MacElroy, J.M.D.: Diffusive hydrogen inter-cage migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates. J. Chem. Phys. 138, 094507 (2013)CrossRefGoogle Scholar
  30. 30.
    Tung, Y.-T., Chen, L.-J., Chen, Y.-P., Lin, S.-T.: The growth of structure I methane hydrate from molecular dynamics simulations. J. Phys. Chem. B. 114, 10804–10813 (2010)CrossRefGoogle Scholar
  31. 31.
    Conde, M.M., Vega, C.: Determining the three-phase coexistence line in methane hydrates using computer simulations. J. Chem. Phys. 133, 064507 (2010)CrossRefGoogle Scholar
  32. 32.
    Abascal, J.L.F., Sanz, E., García Fernández, R., Vega, C.: A potential model for the study of ices and amorphous water: TIP4P/Ice. J. Chem. Phys. 122, 234511 (2005)Google Scholar
  33. 33.
    Jensen, L., Thomsen, K., von Solms, N., et al.: Calculation of liquid water−hydrate−methane vapor phase equilibria from molecular simulations. J. Phys. Chem. B 114, 5775–5782 (2010)CrossRefGoogle Scholar
  34. 34.
    Smirnov, G.S., Stegailov, V.V.: Melting and superheating of sI methane hydrate: molecular dynamics study. J. Chem. Phys. 136, 044523 (2012)CrossRefGoogle Scholar
  35. 35.
    Abascal, J.L.F., Vega, C.: A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005)CrossRefGoogle Scholar
  36. 36.
    Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes. J. Phys. Chem. B 102, 2569–2577 (1998)CrossRefGoogle Scholar
  37. 37.
    Cornell, W.D., Cieplak, P., Bayly, C.I., et al.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  38. 38.
    Chen, B., Siepmann, J.I.: Transferable potentials for phase equilibria. 3. explicit-hydrogen description of normal alkanes. J. Phys. Chem. B 103, 5370–5379 (1999)CrossRefGoogle Scholar
  39. 39.
    Tuckerman, M., Berne, B.J., Martyna, G.J.: Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992)CrossRefGoogle Scholar
  40. 40.
    Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)CrossRefGoogle Scholar
  41. 41.
    Shinoda, W., Shiga, M., Mikami, M.: Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys. Rev. B 69, 134103 (2004)CrossRefGoogle Scholar
  42. 42.
    Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)CrossRefGoogle Scholar
  43. 43.
    Docherty, H., Galindo, A., Vega, C., Sanz, E.: A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate. J. Chem. Phys. 125, 074510 (2006)CrossRefGoogle Scholar
  44. 44.
    Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comp Phys. 117, 1–19 (1995)CrossRefGoogle Scholar
  45. 45.
    Raitza, T., Reinholz, H., Röpke, G., et al.: Laser excited expanding small clusters: single time distribution functions. Contrib. Plasma Phys. 49, 496–506 (2009)CrossRefGoogle Scholar
  46. 46.
    Morozov, I.V., Kazennov, A.M., Bystryi, R.G., et al.: Molecular dynamics simulations of the relaxation processes in the condensed matter on GPUs. Comp. Phys. Comm. 182, 1974–1978 (2011)CrossRefGoogle Scholar
  47. 47.
    Dyadin, Y.A., Aladko, E.Y.: In: Monfort, J. (ed.) Proceedings of the Second International Conference on Natural Gas Hydrates, pp. 67–70 (1996)Google Scholar
  48. 48.
    Smirnov, G.S., Stegailov, V.V.: Toward determination of the new hydrogen hydrate clathrate structures. J. Phys. Chem. Lett. 4, 3560–3564 (2013)CrossRefGoogle Scholar
  49. 49.
    Borah, B., Zhang, H., Snurr, R.Q.: Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage. Chem. Eng. Sci. 124, 135–143 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Genri E. Norman
    • 1
  • Vasily V. Pisarev
    • 1
    Email author
  • Grigory S. Smirnov
    • 1
    • 2
  • Vladimir V. Stegailov
    • 1
  1. 1.Joint Institute for High Temperatures of RASMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyyRussia

Personalised recommendations