Homogeneous Nucleation of [dmim+][Cl] from its Supercooled Liquid Phase: A Molecular Simulation Study

  • Xiaoxia He
  • Yan Shen
  • Francisco R. HungEmail author
  • Erik E. Santiso
Part of the Molecular Modeling and Simulation book series (MMAS)


We have used molecular simulations to study the homogeneous nucleation of the ionic liquid [dmim+][Cl] from its bulk supercooled liquid at 340 K. Our combination of methods include the string method in collective variables (Maragliano et al., J. Chem. Phys. 125:024106, 2006), Markovian milestoning with Voronoi tessellations (Maragliano et al J Chem Theory Comput 5:2589, 2009), and order parameters for molecular crystals (Santiso and Trout J Chem Phys 134:064109, 2011). The minimum free energy path, the approximate size of the critical nucleus, the free energy barrier and the rates involved in the homogeneous nucleation process were determined from our simulations. Our results suggest that the subcooled liquid (58 K of supercooling) has to overcome a free energy barrier of ~85 kcal/mol, and has to form a critical nucleus of size ~3.4 nm; this nucleus then grows to form the monoclinic crystal phase. A nucleation rate of 6.6 × 1010 cm−3 s−1 was determined from our calculations, which agrees with values observed in experiments and simulations of homogeneous nucleation of subcooled water.


Homogeneous nucleation Ionic liquid Molecular dynamics 



We are grateful to Isiah Warner and his group (Chemistry, LSU) for helpful discussions. This work was partially supported by the National Science Foundation (CAREER Award CBET-1253075, and EPSCoR Cooperative Agreement EPS-1003897), and by the Louisiana Board of Regents. High-performance computational resources for this research were provided by High Performance Computing at Louisiana State University ( and by the Louisiana Optical Network Initiative (


  1. 1.
    Tesfai, A., El-Zahab, B., Bwambok, D.K., Baker, G.A., Fakayode, S.O., Lowry, M., Warner, I.M.: Controllable formation of ionic liquid micro- and nanoparticles via a melt-emulsion-quench approach. Nano Lett. 8, 897–901 (2008)CrossRefGoogle Scholar
  2. 2.
    Tesfai, A., El-Zahab, B., Kelley, A.T., Li, M., Garno, J.C., Baker, G.A., Warner, I.M.: Magnetic and nonmagnetic nanoparticles from a group of uniform materials based on organic salts. ACS Nano 3, 3244–3250 (2009)CrossRefGoogle Scholar
  3. 3.
    Bwambok, D.K., El-Zahab, B., Challa, S.K., Li, M., Chandler, L., Baker, G.A., Warner, I.M.: Near-Infrared fluorescent NanoGUMBOS for biomedical imaging. ACS Nano 3, 3854–3860 (2009)CrossRefGoogle Scholar
  4. 4.
    Das, S., Bwambok, D., El-Zahab, B., Monk, J., de Rooy, S.L., Challa, S., Li, M., Hung, F.R., Baker, G.A., Warner, I.M.: Nontemplated approach to tuning the spectral properties of cyanine-based fluorescent nanogumbos. Langmuir 26, 12867–12876 (2010)CrossRefGoogle Scholar
  5. 5.
    Dumke, J.C., El-Zahab, B., Challa, S., Das, S., Chandler, L., Tolocka, M., Hayes, D.J., Warner, I.M.: Lanthanide-based luminescent NanoGUMBOS. Langmuir 26, 15599–15603 (2010)CrossRefGoogle Scholar
  6. 6.
    de Rooy, S.L., El-Zahab, B., Li, M., Das, S., Broering, E., Chandler, L., Warner, I.M.: Fluorescent one-dimensional nanostructures from a group of uniform materials based on organic salts. Chem. Commun. 47, 8916–8918 (2011)CrossRefGoogle Scholar
  7. 7.
    Warner, I.M., El-Zahab, B., Siraj, N.: Perspectives on moving ionic liquid chemistry into the solid phase. Anal. Chem. 86, 7184–7191 (2014)CrossRefGoogle Scholar
  8. 8.
    Thomas, W.P.W.: Ionic Liquids in Synthesis. Wilet-VCH, Weinheim (2008)Google Scholar
  9. 9.
    Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)CrossRefGoogle Scholar
  10. 10.
    Le Bideau, J., Viau, L., Vioux, A.: Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40, 907–925 (2011)CrossRefGoogle Scholar
  11. 11.
    Sha, M., Wu, G., Fang, H., Zhu, G., Liu, Y.: Liquid-to-solid phase transition of a 1,3-dimethylimidazolium chloride ionic liquid monolayer confined between graphite walls. J. Phys. Chem. C 112, 18584–18587 (2008)CrossRefGoogle Scholar
  12. 12.
    Sha, M., Wu, G., Liu, Y., Tang, Z., Fang, H.: Drastic phase transition in ionic liquid Dmim CI confined between graphite walls: new phase formation. J. Phys. Chem. C 113, 4618–4622 (2009)CrossRefGoogle Scholar
  13. 13.
    Pinilla, C., Del Popolo, M.G., Kohanoff, J., Lynden-Bell, R.M.: Polarization relaxation in an ionic liquid confined between electrified walls. J. Phys. Chem. B 111, 4877–4884 (2007)CrossRefGoogle Scholar
  14. 14.
    Pinilla, C., Del Popolo, M.G., Lynden-Bell, R.M., Kohanoff, J.: Structure and dynamics of a confined ionic liquid. topics of relevance to dye-sensitized solar cells. J. Phys. Chem. B 109, 17922–17927 (2005)CrossRefGoogle Scholar
  15. 15.
    Youngs, T.G.A., Hardacre, C.: Application of static charge transfer within an ionic-liquid force field and its effect on structure and dynamics. ChemPhysChem 9, 1548–1558 (2008)CrossRefGoogle Scholar
  16. 16.
    Hanke, C.G., Atamas, N.A., Lynden-Bell, R.M.: Solvation of small molecules in imidazolium ionic liquids: a simulation study. Green Chem. 4, 107–111 (2002)CrossRefGoogle Scholar
  17. 17.
    Del Popolo, M.G., Lynden-Bell, R.M., Kohanoff, J.: Ab initio molecular dynamics simulation of a room temperature ionic liquid. J. Phys. Chem. B 109, 5895–5902 (2005)CrossRefGoogle Scholar
  18. 18.
    Buhl, M., Chaumont, A., Schurhammer, R., Wipff, G.: Ab initio molecular dynamics of liquid 1,3-dimethylimidazolium chloride. J. Phys. Chem. B 109, 18591–18599 (2005)CrossRefGoogle Scholar
  19. 19.
    Monk, J., Singh, R., Hung, F.R.: Effects of Pore size and pore loading on the properties of ionic liquids confined inside nanoporous CMK-3 carbon materials. J. Phys. Chem. C 115, 3034–3042 (2011)CrossRefGoogle Scholar
  20. 20.
    Debenedetti, P.G.: Metastable Liquids: Concepts and Principles. Princeton University Press, Princeton, NJ (1996)Google Scholar
  21. 21.
    Kaschiev, D.: Nucleation: Basic Theory with Applications. Butterworth-Heinemann, Oxford (2000)Google Scholar
  22. 22.
    Price, S.L.: Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc. Chem. Res. 42, 117–126 (2008)CrossRefGoogle Scholar
  23. 23.
    Erdemir, D., Lee, A.Y., Myerson, A.S.: Nucleation of crystals from solution: classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009)CrossRefGoogle Scholar
  24. 24.
    Vekilov, P.G.: Nucleation. Cryst. Growth Des. 10, 5007–5019 (2010)CrossRefGoogle Scholar
  25. 25.
    Auer, S., Frenkel, D.: Quantitative prediction of crystal-nucleation rates for spherical colloids: a computational approach. Annu. Rev. Phys. Chem. 55, 333–361 (2004)CrossRefGoogle Scholar
  26. 26.
    Anwar, J., Zahn, D.: Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. Angewandte Chemie-International Edition 50, 1996–2013 (2011)CrossRefGoogle Scholar
  27. 27.
    Palmer, J.C., Debenedetti, P.G.: Recent advances in molecular simulation: a chemical engineering perspective. AIChE J. 61, 370–383 (2015)CrossRefGoogle Scholar
  28. 28.
    TenWolde, P.R., RuizMontero, M.J., Frenkel, D.: Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947 (1996)Google Scholar
  29. 29.
    Vehkamäki, H., Ford, I.J.: Critical cluster size and droplet nucleation rate from growth and decay simulations of Lennard-Jones clusters. J. Chem. Phys. 112, 4193–4202 (2000)CrossRefGoogle Scholar
  30. 30.
    Auer, S., Frenkel, D.: Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001)CrossRefGoogle Scholar
  31. 31.
    Moroni, D., ten Wolde, P.R., Bolhuis, P.G.: Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005)CrossRefGoogle Scholar
  32. 32.
    Trudu, F., Donadio, D., Parrinello, M.: Freezing of a Lennard-Jones fluid: from nucleation to spinodal regime. Phys. Rev. Lett. 97, 105701 (2006)CrossRefGoogle Scholar
  33. 33.
    Desgranges, C., Delhommelle, J.: Insights into the molecular mechanism underlying polymorph selection. J. Am. Chem. Soc. 128, 15104–15105 (2006)CrossRefGoogle Scholar
  34. 34.
    Desgranges, C., Delhommelle, J.: Polymorph selection during the crystallization of Yukawa systems. J. Chem. Phys. 126, 054501 (2007)CrossRefGoogle Scholar
  35. 35.
    Jungblut, S., Dellago, C.: Heterogeneous crystallization on tiny clusters. EPL (Europhysics Letters) 96, 56006 (2011)CrossRefGoogle Scholar
  36. 36.
    Beckham, G.T., Peters, B.: Optimizing nucleus size metrics for liquid-solid nucleation from transition paths of near-nanosecond duration. J. Phys. Chem. Lett. 2, 1133–1138 (2011)CrossRefGoogle Scholar
  37. 37.
    Chkonia, G., Wölk, J., Strey, R., Wedekind, J., Reguera, D.: Evaluating nucleation rates in direct simulations. J. Chem. Phys. 130, 064505 (2009)CrossRefGoogle Scholar
  38. 38.
    Radhakrishnan, R., Trout, B.L.: Nucleation of hexagonal ice (Ih) in liquid water. J. Am. Chem. Soc. 125, 7743–7747 (2003)CrossRefGoogle Scholar
  39. 39.
    Li, T., Donadio, D., Russo, G., Galli, G.: Homogeneous ice nucleation from supercooled water. Phys. Chem. Chem. Phys. 13, 19807–19813 (2011)CrossRefGoogle Scholar
  40. 40.
    Reinhardt, A., Doye, J.P.K.: Free energy landscapes for homogeneous nucleation of ice for a monatomic water model. J. Chem. Phys. 136, 054501 (2012)CrossRefGoogle Scholar
  41. 41.
    Sanz, E., Vega, C., Espinosa, J.R., Caballero-Bernal, R., Abascal, J.L.F., Valeriani, C.: Homogeneous ice nucleation at moderate supercooling from molecular simulation. J. Am. Chem. Soc. 135, 15008–15017 (2013)CrossRefGoogle Scholar
  42. 42.
    Sear, R.P.: The non-classical nucleation of crystals: microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate. Int. Mater. Rev. 57, 328–356 (2012)CrossRefGoogle Scholar
  43. 43.
    Andrey, V.B., Jamshed, A., Ruslan, D., Richard, H.: Challenges in molecular simulation of homogeneous ice nucleation. J. Phys.: Condens. Matter 20, 494243 (2008)Google Scholar
  44. 44.
    Reinhardt, A., Doye, J.P.K.: Note: homogeneous TIP4P/2005 ice nucleation at low supercooling. J. Chem. Phys. 139, 096102 (2013)CrossRefGoogle Scholar
  45. 45.
    Joswiak, M.N., Duff, N., Doherty, M.F., Peters, B.: Size-dependent surface free energy and tolman-corrected droplet nucleation of TIP4P/2005 water. J. Phys. Chem. Lett. 4, 4267–4272 (2013)CrossRefGoogle Scholar
  46. 46.
    Holten, V., Limmer, D.T., Molinero, V., Anisimov, M.A.: Nature of the anomalies in the supercooled liquid state of the mW model of water. J. Chem. Phys. 138, 174501 (2013)CrossRefGoogle Scholar
  47. 47.
    Valeriani, C., Sanz, E., Frenkel, D.: Rate of homogeneous crystal nucleation in molten NaCl. J. Chem. Phys. 122 (2005)Google Scholar
  48. 48.
    Quigley, D., Rodger, P.M.: Free energy and structure of calcium carbonate nanoparticles during early stages of crystallization. J. Chem. Phys. 128, 221101 (2008)CrossRefGoogle Scholar
  49. 49.
    Li, T., Donadio, D., Galli, G.: Nucleation of tetrahedral solids: a molecular dynamics study of supercooled liquid silicon. J. Chem. Phys. 131, 224519 (2009)CrossRefGoogle Scholar
  50. 50.
    Yi, P., Rutledge, G.C.: Molecular simulation of crystal nucleation in n-octane melts. J. Chem. Phys. 131, 134902 (2009)CrossRefGoogle Scholar
  51. 51.
    Saika-Voivod, I., Poole, P.H., Bowles, R.K.: Test of classical nucleation theory on deeply supercooled high-pressure simulated silica. J. Chem. Phys. 124, 224709 (2006)CrossRefGoogle Scholar
  52. 52.
    Agarwal, V., Peters, B.: Nucleation near the eutectic point in a Potts-lattice gas model. J. Chem. Phys. 140, 084111 (2014)CrossRefGoogle Scholar
  53. 53.
    Singh, M., Dhabal, D., Nguyen, A.H., Molinero, V., Chakravarty, C.: Triplet correlations dominate the transition from simple to tetrahedral liquids. Phys. Rev. Lett. 112, 147801 (2014)CrossRefGoogle Scholar
  54. 54.
    Shah, M., Santiso, E.E., Trout, B.L.: Computer simulations of homogeneous nucleation of benzene from the melt. J. Phys. Chem. B 115, 10400–10412 (2011)CrossRefGoogle Scholar
  55. 55.
    Giberti, F., Salvalaglio, M., Mazzotti, M., Parrinello, M.: Insight into the nucleation of urea crystals from the melt. Chem. Eng. Sci. 121, 51–59 (2015)CrossRefGoogle Scholar
  56. 56.
    Yu, T.-Q., Chen, P.-Y., Chen, M., Samanta, A., Vanden-Eijnden, E., Tuckerman, M.: Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions. J. Chem. Phys. 140, 214109 (2014)CrossRefGoogle Scholar
  57. 57.
    Samanta, A., Tuckerman, M.E., Yu, T.-Q.: E, W. Microscopic mechanisms of equilibrium melting of a solid. Science 346, 729–732 (2014)CrossRefGoogle Scholar
  58. 58.
    Pedersen, U.R., Hummel, F., Dellago, C.: Computing the crystal growth rate by the interface pinning method. J. Chem. Phys. 142, 044104 (2015)Google Scholar
  59. 59.
    Maragliano, L., Fischer, A., Vanden-Eijnden, E., Ciccotti, G.: String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 125, 024106 (2006)Google Scholar
  60. 60.
    Vanden-Eijnden, E., Venturoli, M.: Revisiting the finite temperature string method for the calculation of reaction tubes and free energies. J. Chem. Phys. 130, 194103 (2009)Google Scholar
  61. 61.
    Maragliano, L., Vanden-Eijnden, E., Roux, B.: Free energy and kinetics of conformational transitions from voronoi tessellated milestoning with restraining potentials. J. Chem. Theory Comput. 5, 2589–2594 (2009)CrossRefGoogle Scholar
  62. 62.
    Vanden-Eijnden, E., Venturoli, M.: Markovian milestoning with Voronoi tessellations. J. Chem. Phys. 130, 194101 (2009)CrossRefGoogle Scholar
  63. 63.
    Ovchinnikov, V., Karplus, M., Vanden-Eijnden, E.: Free energy of conformational transition paths in biomolecules: the string method and its application to myosin VI. J. Chem. Phys. 134, 085103 (2011)CrossRefGoogle Scholar
  64. 64.
    Miller, T.F., III; Vanden-Eijnden, E., Chandler, D.: Solvent coarse-graining and the string method applied to the hydrophobic collapse of a hydrated chain. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 14559–14564 (2007)Google Scholar
  65. 65.
    Santiso, E.E., Trout, B.L.: A general set of order parameters for molecular crystals. J. Chem. Phys. 134, 064109 (2011)CrossRefGoogle Scholar
  66. 66.
    Santiso, E.E., Trout, B.L.: A general method for molecular modeling of nucleation from the melt. J. Chem. Phys. 143, 174109 (2015)Google Scholar
  67. 67.
    He, X., Shen, Y., Hung, F.R., Santiso, E.E.: Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt. J. Chem. Phys. 143, 124506 (2015)CrossRefGoogle Scholar
  68. 68.
    Barducci, A., Bonomi, M., Parrinello, M.: Metadynamics. Wiley Interdis. Rev. Comput. Mol. Sci. 1, 826–843 (2011)CrossRefGoogle Scholar
  69. 69.
    Allen, F.H.: The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallographica Sect. B-Struct. Sci. 58, 380–388 (2002)CrossRefGoogle Scholar
  70. 70.
    Arduengo, A.J., Dias, H.V.R., Harlow, R.L., Kline, M.: Electronic stabilization of nucleophilic carbenes. J. Am. Chem. Soc. 114, 5530–5534 (1992)CrossRefGoogle Scholar
  71. 71.
    Lopes, J.N.C., Deschamps, J., Padua, A.A.H.: Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 108, 2038–2047 (2004)CrossRefGoogle Scholar
  72. 72.
    Canongia Lopes, J.N., Padua, A.A.H.: Molecular force field for ionic liquids III: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J. Phys. Chem. B 110, 19586–19592 (2006)Google Scholar
  73. 73.
    Lopes, J.N.C., Padua, A.A.H.: Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 108, 16893–16898 (2004)CrossRefGoogle Scholar
  74. 74.
    Shimizu, K., Almantariotis, D., Gomes, M.F.C., Padua, A.A.H., Lopes, J.N.C.: Molecular force field for ionic liquids V: hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fluoroalkylimidazolium cations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 114, 3592–3600 (2010)CrossRefGoogle Scholar
  75. 75.
    Lopes, J.N.C., Padua, A.A.H., Shimizu, K.: Molecular force field for ionic liquids IV: trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions. J. Phys. Chem. B 112, 5039–5046 (2008)CrossRefGoogle Scholar
  76. 76.
    Fannin, A.A., Floreani, D.A., King, L.A., Landers, J.S., Piersma, B.J., Stech, D.J., Vaughn, R.L., Wilkes, J.S., Williams, J.L.: Properties of 1,3-dialkylimidazolium chloride aluminum-chloride ionic liquids. 2. phase-transitions, densities, electrical conductivities, and viscosities. J. Phys. Chem. 88, 2614–2621 (1984)CrossRefGoogle Scholar
  77. 77.
    Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)CrossRefGoogle Scholar
  78. 78.
    Darden, T., York, D., Pedersen, L.: Particle mesh ewald—an n.log(n) method for ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)CrossRefGoogle Scholar
  79. 79.
    Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.: LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)CrossRefGoogle Scholar
  80. 80.
    Vanden-Eijnden, E.: Some recent techniques for free energy calculations. J. Comput. Chem. 30, 1737–1747 (2009)CrossRefGoogle Scholar
  81. 81.
    Pruppacher, H.R.: A new look at homogeneous ice nucleation in supercooled water drops. J. Atmos. Sci. 52, 1924–1933 (1995)CrossRefGoogle Scholar
  82. 82.
    Taborek, P.: Nucleation in emulsified supercooled water. Phys. Rev. B 32, 5902–5906 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Xiaoxia He
    • 1
  • Yan Shen
    • 1
  • Francisco R. Hung
    • 1
    • 2
    Email author
  • Erik E. Santiso
    • 3
  1. 1.Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.Center for Computation & TechnologyLouisiana State UniversityBaton RougeUSA
  3. 3.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations