Advertisement

Bioinformatics and Orphan Diseases

  • Anil G. Jegga
Chapter
Part of the Translational Bioinformatics book series (TRBIO, volume 10)

Abstract

In general, a rare or orphan disease is any disease that affects a small percentage of the population. Since a majority of the known orphan diseases are genetic, they are present throughout the life of affected individuals. Many of the orphan diseases appear early in life and approximately 30 % of children with orphan diseases die before the age of 5. Further, a large majority of these diseases lack effective treatments. While most of genes and pathways underlying orphan diseases remain obscure, technological advances and innovative informatics approaches are expected to accelerate the rate of identification of underlying causal mutations and therapeutic discovery. Recent technological advances in DNA sequencing for instance, can aid in identifying genes associated with orphan diseases of previously unknown etiology using DNA from as few as 2–4 patients. Likewise, advanced computational statistical techniques permit integration and mining of omics data from orphan disease patients with high throughput “signatures” representing cellular responses to perturbing agents to identify therapeutic candidates for orphan diseases. In this chapter, we review some of the current bioinformatic analytical options available for orphan disease and drug research including computational approaches for candidate gene prioritization and high throughput compound screening to enable therapeutic discovery. We also discuss strategies and present examples and case studies of common drugs being repositioned for treatment of orphan diseases.

Keywords

Rare disease Orphan disease Disease networks Drug repositioning Drug repurposing Gene prioritization 

References

  1. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinf. 2005;6:55.CrossRefGoogle Scholar
  2. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics. 2006;22:773–4.PubMedCrossRefGoogle Scholar
  3. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, et al. Gene prioritization through genomic data fusion. Nat Biotechnol. 2006;24:537–44.PubMedCrossRefGoogle Scholar
  5. Altman RB. PharmGKB: a logical home for knowledge relating genotype to drug response phenotype. Nat Genet. 2007;39:426.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Antonarakis SE, Beckmann JS. Mendelian disorders deserve more attention. Nat Rev. 2006;7:277–82.CrossRefGoogle Scholar
  7. ARIC. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol. 1989;129:687–702.CrossRefGoogle Scholar
  8. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.PubMedCrossRefGoogle Scholar
  9. Ayme S. [Orphanet, an information site on rare diseases]. Soins. 2003;46–47.Google Scholar
  10. Bainbridge MN, Wiszniewski W, Murdock DR, Friedman J, Gonzaga-Jauregui C, Newsham I, Reid JG, Fink JK, Morgan MB, Gingras MC, et al. Whole-genome sequencing for optimized patient management. Sci Transl Med. 2011;3:87re83.CrossRefGoogle Scholar
  11. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R. NCBI GEO: mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res. 2007;35:D760–5.PubMedCrossRefGoogle Scholar
  12. Benitez BA, Alvarado D, Cai Y, Mayo K, Chakraverty S, Norton J, Morris JC, Sands MS, Goate A, Cruchaga C. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. PLoS One. 2011;6:e26741.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, Yalnizoglu D, Tuysuz B, Caglayan AO, Gokben S, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2010;467:207–10.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Boguski MS, Mandl KD, Sukhatme VP. Drug discovery. Repurposing with a difference. Science (New York, NY). 2009;324:1394–5.CrossRefGoogle Scholar
  15. Bolze A, Byun M, McDonald D, Morgan NV, Abhyankar A, Premkumar L, Puel A, Bacon CM, Rieux-Laucat F, Pang K, et al. Whole-exome-sequencing-based discovery of human FADD deficiency. Am J Hum Genet. 2010;87:873–81.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33(Suppl):228–37.PubMedCrossRefGoogle Scholar
  17. Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, Wyatt PG. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. Chem Med Chem. 2008;3:435–44.PubMedCrossRefGoogle Scholar
  18. Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 2007;35:3823–35.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Byun M, Abhyankar A, Lelarge V, Plancoulaine S, Palanduz A, Telhan L, Boisson B, Picard C, Dewell S, Zhao C, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med. 2010;207:2307–12.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat. 2009;30:1237–44.PubMedCrossRefGoogle Scholar
  21. Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Science. 2008;321:263–6.PubMedCrossRefGoogle Scholar
  22. Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics. 2006;22:2729–34.PubMedCrossRefGoogle Scholar
  23. Chen JY, Shen C, Sivachenko AY. Mining Alzheimer disease relevant proteins from integrated protein interactome data. Pac Symp Biocomput. 2006:367–378.Google Scholar
  24. Chen J, Xu H, Aronow BJ, Jegga AG. Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinf. 2007;8:392.CrossRefGoogle Scholar
  25. Chen J, Aronow BJ, Jegga AG. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinf. 2009a;10:73.CrossRefGoogle Scholar
  26. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009b;37:W305–11.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chiang AP, Butte AJ. Systematic evaluation of drug-disease relationships to identify leads for novel drug uses. Clin Pharmacol Ther. 2009;86:507–10.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloglu A, Ozen S, Sanjad S, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:19096–101.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19:1553–61.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cooper GM, Stone EA, Asimenos G, Program NCS, Green ED, Batzoglou S, Sidow A. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15:901–13.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol. 2010;6:e1001025.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, Liu X. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24:2125–37.PubMedCrossRefGoogle Scholar
  33. Erlich Y, Edvardson S, Hodges E, Zenvirt S, Thekkat P, Shaag A, Dor T, Hannon GJ, Elpeleg O. Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res. 2011;21:658–64.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci U S A. 2008;105:4323–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Field MJ, Boat TF. Rare diseases and orphan products: accelerating research and development. In: MJ Field, TF Boat, editors. Rare diseases and orphan products: accelerating research and development. Committee on Accelerating Rare Diseases Research and Orphan Product Development, Institute of Medicine. 2010.Google Scholar
  36. Franke L, Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet. 2006;78:1011–25.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Freudenberg J, Propping P. A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatics. 2002;18 Suppl 2:S110–5.PubMedCrossRefGoogle Scholar
  38. Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics. 2009;25:i54–62.PubMedPubMedCentralCrossRefGoogle Scholar
  39. George RA, Liu JY, Feng LL, Bryson-Richardson RJ, Fatkin D, Wouters MA. Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucleic Acids Res. 2006;34:e130.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, Arts P, van Lier B, Steehouwer M, van Reeuwijk J, Kant SG, et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet. 2010;87:418–23.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gilissen C, Hoischen A, Brunner HG, Veltman JA. Disease gene identification strategies for exome sequencing. Eur J Hum Genet. 2012. doi: 10.1038/ejhg.2011.258. ejhg2011258 [pii].Google Scholar
  42. Goel R, Harsha HC, Pandey A, Prasad TS. Human protein reference database and human proteinpedia as resources for phosphoproteome analysis. Mol Biosyst. 2012;8:453–63.PubMedCrossRefGoogle Scholar
  43. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL. The human disease network. Proc Natl Acad Sci U S A. 2007;104:8685–90.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gonzalez-Perez A, Lopez-Bigas N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score. Condel Am J Hum Genet. 2011;88:440–9.PubMedCrossRefGoogle Scholar
  45. Gotz A, Tyynismaa H, Euro L, Ellonen P, Hyotylainen T, Ojala T, Hamalainen RH, Tommiska J, Raivio T, Oresic M, et al. Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet. 2011;88:635–42.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Grau D, Serbedzija G. Innovative strategies for drug repurposing. Drug Discovery Dev. 2005.Google Scholar
  47. Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA. Online Mendelian Inheritance in Man (OMIM). Hum Mutat. 2000;15:57–61.PubMedCrossRefGoogle Scholar
  48. Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B, Steehouwer M, de Vries P, de Reuver R, Wieskamp N, Mortier G, et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet. 2010;42:483–5.PubMedCrossRefGoogle Scholar
  49. Hristovski D, Peterlin B, Mitchell JA, Humphrey SM. Using literature-based discovery to identify disease candidate genes. Int J Med Inform. 2005;74:289–98.PubMedCrossRefGoogle Scholar
  50. Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci U S A. 2010a;107:14621–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Iorio F, Isacchi A, di Bernardo D, Brunetti-Pierri N. Identification of small molecules enhancing autophagic function from drug network analysis. Autophagy. 2010b;6:1204–5.PubMedCrossRefGoogle Scholar
  52. Isidor B, Lindenbaum P, Pichon O, Bezieau S, Dina C, Jacquemont S, Martin-Coignard D, Thauvin-Robinet C, Le Merrer M, Mandel JL, et al. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet. 2011;43:306–8.PubMedCrossRefGoogle Scholar
  53. Jimenez-Sanchez G, Childs B, Valle D. Human disease genes. Nature. 2001;409:853–5.PubMedCrossRefGoogle Scholar
  54. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, Wuu J, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68:857–64.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Junker BH, Koschutzki D, Schreiber F. Exploration of biological network centralities with CentiBiN. BMC Bioinf. 2006;7:219.CrossRefGoogle Scholar
  56. Kaimal V, Sardana D, Bardes EE, Gudivada RC, Chen J, Jegga AG. Integrative systems biology approaches to identify and prioritize disease and drug candidate genes. Methods Mol Biol. 2011;700:241–59.PubMedCrossRefGoogle Scholar
  57. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;34:D354–7.PubMedCrossRefGoogle Scholar
  58. Kann MG. Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform. 2007;8:333–46.PubMedCrossRefGoogle Scholar
  59. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, et al. Predicting new molecular targets for known drugs. Nature. 2009;462:175–81.PubMedPubMedCentralCrossRefGoogle Scholar
  60. King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science (New York, NY). 1975;188:107–16.CrossRefGoogle Scholar
  61. Kingsmore SF, Saunders CJ. Deep sequencing of patient genomes for disease diagnosis: when will it become routine? Sci Transl Med. 2011;3:87ps23.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput Biol. 2009;5:e1000423.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kohler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet. 2008;82:949–58.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Korstanje R, Paigen B. From QTL to gene: the harvest begins. Nat Genet. 2002;31:235–6.PubMedCrossRefGoogle Scholar
  66. Krawitz PM, Schweiger MR, Rodelsperger C, Marcelis C, Kolsch U, Meisel C, Stephani F, Kinoshita T, Murakami Y, Bauer S, et al. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet. 2010;42:827–9.PubMedCrossRefGoogle Scholar
  67. Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ, Bork P. STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res. 2012;40:D876–80.PubMedCrossRefGoogle Scholar
  68. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.PubMedCrossRefGoogle Scholar
  69. Lalonde E, Albrecht S, Ha KC, Jacob K, Bolduc N, Polychronakos C, Dechelotte P, Majewski J, Jabado N. Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Hum Mutat. 2010;31:918–23.PubMedCrossRefGoogle Scholar
  70. Lamb J. The connectivity map: a new tool for biomedical research. Nat Rev Cancer. 2007;7:54–60.PubMedCrossRefGoogle Scholar
  71. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science (New York, NY). 2006;313:1929–35.CrossRefGoogle Scholar
  72. Li Y, Agarwal P. A pathway-based view of human diseases and disease relationships. PLoS One. 2009;4:e4346.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics. 2009;25:2744–50.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li MX, Gui HS, Kwan JS, Bao SY, Sham PC. A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res. 2012;40:e53.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lin Z, Chen Q, Lee M, Cao X, Zhang J, Ma D, Chen L, Hu X, Wang H, Wang X, et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet. 2012;90:558–64.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Linghu B, Snitkin ES, Hu Z, Xia Y, Delisi C. Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 2009;10:R91.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lopez-Bigas N, Ouzounis CA. Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 2004;32:3108–14.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mackay TF. Quantitative trait loci in Drosophila. Nat Rev. 2001;2:11–20.CrossRefGoogle Scholar
  79. Majewski J, Schwartzentruber JA, Caqueret A, Patry L, Marcadier J, Fryns JP, Boycott KM, Ste-Marie LG, McKiernan FE, Marik I, et al. Mutations in NOTCH2 in families with Hajdu-Cheney syndrome. Hum Mutat. 2011;32:1114–7.PubMedCrossRefGoogle Scholar
  80. Marchegiani S, Davis T, Tessadori F, van Haaften G, Brancati F, Hoischen A, Huang H, Valkanas E, Pusey B, Schanze D, et al. Recurrent mutations in the basic domain of TWIST2 cause Ablepharon Macrostomia and barber-say syndromes. Am J Hum Genet. 2015;97:99–110.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Masseroli M, Martucci D, Pinciroli F. GFINDer: genome Function INtegrated Discoverer through dynamic annotation, statistical analysis, and mining. Nucleic Acids Res. 2004;32:W293–300.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Masseroli M, Galati O, Pinciroli F. GFINDer: genetic disease and phenotype location statistical analysis and mining of dynamically annotated gene lists. Nucleic Acids Res. 2005;33:W717–23.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Meester JA, Southgate L, Stittrich AB, Venselaar H, Beekmans SJ, den Hollander N, Bijlsma EK, Helderman-van den Enden A, Verheij JB, Glusman G et al. Heterozygous loss-of-function mutations in DLL4 cause Adams-Oliver syndrome. Am J Hum Genet. 2015;97:475–82.Google Scholar
  84. Morrison AC, Voorman A, Johnson AD, Liu X, Yu J, Li A, Muzny D, Yu F, Rice K, Zhu C, et al. Whole-genome sequence-based analysis of high-density lipoprotein cholesterol. Nat Genet. 2013;45:899–901.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, Garimella KV, Fisher S, Abreu J, Barry AJ, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363:2220–7.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3.PubMedPubMedCentralCrossRefGoogle Scholar
  87. O’Connor KA, Roth BL. Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nat Rev Drug Discov. 2005;4:1005–14.PubMedCrossRefGoogle Scholar
  88. O’Sullivan J, Bitu CC, Daly SB, Urquhart JE, Barron MJ, Bhaskar SS, Martelli-Junior H, dos Santos Neto PE, Mansilla MA, Murray JC, et al. Whole-Exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. Am J Hum Genet. 2011;88:616–20.PubMedPubMedCentralCrossRefGoogle Scholar
  89. ODA. The Orphan Drug Act – implementation and impact. Department of Health and Human Services, Office of Inspector Journal. 2001.Google Scholar
  90. Olatubosun A, Valiaho J, Harkonen J, Thusberg J, Vihinen M. PON-P: integrated predictor for pathogenicity of missense variants. Hum Mutat. 2012;33:1166–74.PubMedCrossRefGoogle Scholar
  91. Ortutay C, Vihinen M. Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 2009;37:622–8.PubMedCrossRefGoogle Scholar
  92. Padhy BM, Gupta YK. Drug repositioning: re-investigating existing drugs for new therapeutic indications. J Postgrad Med. 2011;57:153–60.PubMedCrossRefGoogle Scholar
  93. Perez-Iratxeta C, Bork P, Andrade MA. Association of genes to genetically inherited diseases using data mining. Nat Genet. 2002;31:316–9.PubMedGoogle Scholar
  94. Perez-Iratxeta C, Wjst M, Bork P, Andrade MA. G2D: a tool for mining genes associated with disease. BMC Genet. 2005;6:45.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Pierce SB, Walsh T, Chisholm KM, Lee MK, Thornton AM, Fiumara A, Opitz JM, Levy-Lahad E, Klevit RE, King MC. Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault Syndrome. Am J Hum Genet. 2010;87:282–8.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Piro RM, Di Cunto F. Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS J. 2012;279:678–96.PubMedCrossRefGoogle Scholar
  97. Puente XS, Quesada V, Osorio FG, Cabanillas R, Cadinanos J, Fraile JM, Ordonez GR, Puente DA, Gutierrez-Fernandez A, Fanjul-Fernandez M, et al. Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am J Hum Genet. 2011;88:650–6.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Pujol A, Mosca R, Farres J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010;31:115–23.PubMedCrossRefGoogle Scholar
  99. Rados C. Orphan products: hope for people with rare diseases. FDA Consum. 2003;37:10–5.PubMedGoogle Scholar
  100. Ratbi I, Falkenberg KD, Sommen M, Al-Sheqaih N, Guaoua S, Vandeweyer G, Urquhart JE, Chandler KE, Williams SG, Roberts NA, et al. Heimler syndrome is caused by hypomorphic mutations in the peroxisome-biogenesis genes PEX1 and PEX6. Am J Hum Genet. 2015;97:535–45.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39:e118.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rossi S, Masotti D, Nardini C, Bonora E, Romeo G, Macii E, Benini L, Volinia S. TOM: a web-based integrated approach for identification of candidate disease genes. Nucleic Acids Res. 2006;34:W285–92.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Russ AP, Lampel S. The druggable genome: an update. Drug Discov Today. 2005;10:1607–10.PubMedCrossRefGoogle Scholar
  104. Sardana D, Zhu C, Zhang M, Gudivada RC, Yang L, Jegga AG. Drug repositioning for orphan diseases. Brief Bioinform. 2011;12:346–56.PubMedCrossRefGoogle Scholar
  105. Sasidharan Nair P, Vihinen M. VariBench: a benchmark database for variations. Hum Mutat. 2013;34:42–9.PubMedCrossRefGoogle Scholar
  106. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.PubMedCrossRefGoogle Scholar
  107. Shihab HA, Gough J, Cooper DN, Day IN, Gaunt TR. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics. 2013;29:1504–10.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, et al. Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet. 2011;43:303–5.PubMedCrossRefGoogle Scholar
  109. Smith NG, Eyre-Walker A. Human disease genes: patterns and predictions. Gene. 2003;318:169–75.PubMedCrossRefGoogle Scholar
  110. Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ. Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol. 2010;6:e1000662.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Thornblad TA, Elliott KS, Jowett J, Visscher PM. Prioritization of positional candidate genes using multiple web-based software tools. Twin Res Hum Genet. 2007;10:861–70.PubMedCrossRefGoogle Scholar
  113. Tiffin N, Kelso JF, Powell AR, Pan H, Bajic VB, Hide WA. Integration of text- and data-mining using ontologies successfully selects disease gene candidates. Nucleic Acids Res. 2005;33:1544–52.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tiffin N, Adie E, Turner F, Brunner HG, van Driel MA, Oti M, Lopez-Bigas N, Ouzounis C, Perez-Iratxeta C, Andrade-Navarro MA, et al. Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res. 2006;34:3067–81.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Tranchevent LC, Barriot R, Yu S, Van Vooren S, Van Loo P, Coessens B, De Moor B, Aerts S, Moreau Y. ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res. 2008;36:W377–84.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Turner FS, Clutterbuck DR, Semple CA. POCUS: mining genomic sequence annotation to predict disease genes. Genome Biol. 2003;4:R75.PubMedPubMedCentralCrossRefGoogle Scholar
  117. UniProt C. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2014;42:D191–8.CrossRefGoogle Scholar
  118. UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.CrossRefGoogle Scholar
  119. United States Food and Drug A. The Orphan Drug regulations. 1992.Google Scholar
  120. van Driel MA, Cuelenaere K, Kemmeren PP, Leunissen JA, Brunner HG. A new web-based data mining tool for the identification of candidate genes for human genetic disorders. Eur J Hum Genet. 2003;11:57–63.PubMedCrossRefGoogle Scholar
  121. van Driel MA, Cuelenaere K, Kemmeren PP, Leunissen JA, Brunner HG, Vriend G. GeneSeeker: extraction and integration of human disease-related information from web-based genetic databases. Nucleic Acids Res. 2005;33:W758–61.PubMedPubMedCentralCrossRefGoogle Scholar
  122. van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA. A text-mining analysis of the human phenome. Eur J Hum Genet. 2006;14:535–42.PubMedCrossRefGoogle Scholar
  123. Vissers LE, Lausch E, Unger S, Campos-Xavier AB, Gilissen C, Rossi A, Del Rosario M, Venselaar H, Knoll U, Nampoothiri S, et al. Chondrodysplasia and abnormal joint development associated with mutations in IMPAD1, encoding the Golgi-resident nucleotide phosphatase, gPAPP. Am J Hum Genet. 2011;88:608–15.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wang JL, Yang X, Xia K, Hu ZM, Weng L, Jin X, Jiang H, Zhang P, Shen L, Guo JF, et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain. 2010;133:3510–8.PubMedCrossRefGoogle Scholar
  125. Wastfelt M, Fadeel B, Henter JI. A journey of hope: lessons learned from studies on rare diseases and orphan drugs. J Intern Med. 2006;260:1–10.PubMedCrossRefGoogle Scholar
  126. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:D668–72.PubMedCrossRefGoogle Scholar
  127. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:D901–6.PubMedCrossRefGoogle Scholar
  128. Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human disease genes. Mol Syst Biol. 2008;4:189.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wu C, Gudivada RC, Aronow BJ, Jegga AG. Computational drug repositioning through heterogeneous network clustering. BMC Syst Biol. 2013;7 Suppl 5:S6.CrossRefGoogle Scholar
  130. Xu K, Cote TR. Database identifies FDA-approved drugs with potential to be repurposed for treatment of orphan diseases. Brief Bioinform. 2011;12:341–5.PubMedCrossRefGoogle Scholar
  131. Xu J, Li Y. Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics. 2006;22:2800–5.PubMedCrossRefGoogle Scholar
  132. Zhang M, Zhu C, Jacomy A, Lu LJ, Jegga AG. The orphan disease networks. Am J Hum Genet. 2011;88:755–66.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhu M, Zhao S. Candidate gene identification approach: progress and challenges. Int J Biol Sci. 2007;3:420–7.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhu C, Kushwaha A, Berman K, Jegga AG. A vertex similarity-based framework to discover and rank orphan disease-related genes. BMC Syst Biol. 2012a;6 Suppl 3:S8.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhu F, Shi Z, Qin C, Tao L, Liu X, Xu F, Zhang L, Song Y, Zhang J, Han B, et al. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res. 2012b;40:D1128–36.PubMedCrossRefGoogle Scholar
  136. Zuchner S, Dallman J, Wen R, Beecham G, Naj A, Farooq A, Kohli MA, Whitehead PL, Hulme W, Konidari I, et al. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet. 2011;88:201–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Division of Biomedical InformaticsCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiUSA
  3. 3.Department of Computer ScienceUniversity of Cincinnati College of EngineeringCincinnatiUSA

Personalised recommendations