Telocytes pp 77-103 | Cite as

Telocytes: New Players in Gallstone Disease

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 913)

Abstract

Cholesterol gallstone disease is highly prevalent in Western countries, particularly in women and some specific ethnic groups. The mechanisms behind the formation of gallstones are not clearly understood, but gallbladder dysmotility seems to be a key factor that triggers the precipitation of cholesterol microcrystals from supersaturated lithogenic bile.

Given that newly described interstitial cells, telocytes, are present in the gallbladder and they are located in close vicinity of smooth muscle cell and neural fibers possibly interfering with gallbladder motility or contractility, authors are trying to summarize the current knowledge on the role of telocytes with respect to disturbed gallbladder function in gallstone disease.

Keywords

Telocytes Gallstone disease Cholesterol saturation index Bile lithogenicity 

References

  1. 1.
    Admirand WH, Small DM. The physicochemical basis of cholesterol gallstone formation in man. J Clin Invest. 1968;47:1043–52.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ahmadi O, Nicholson Mde L, Gould ML, Mitchell A, Stringer MD. Interstitial cells of Cajal are present in human extrahepatic bile ducts. J Gastroenterol Hepatol. 2010;25:277–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Amigo L, Zanlugo S, Mendoza H. Risk factors and pathogenesis of cholesterol gallstones: state of the ART. Eur Rev Med Pharmacol Sci. 1999;3:241–6.PubMedGoogle Scholar
  4. 4.
    Apstein MD, Carey MC. Pathogenesis of cholesterol gallstones: a parsimonious hypothesis. Eur J Clin Invest. 1996;26:343–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Barile L, Gherghiceanu M, Popescu LM, Moccetti T, Vassalli G. Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. J Biomed Biotechnol. 2012; Article ID 354605, 2012. doi:10.1155/2012/354605.
  6. 6.
    Bei Y, Wang F, Yang C, Xiao J. Telocytes in regenerative medicine. J Cell Mol Med. 2015;19:1441–54.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bennion LJ, Grundy SM. Risk factors for the development of cholelithiasis in man. N Engl J Med. 1978;299:1161–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Berci G. Historical overview of surgical treatment of biliary stone disease. In: MacFadyen BV, Arregui M, Eubanks S, Olsen DO, Peters JH, Soper NJ, Swanström LL, Wexner SD, editors. Laparoscopic surgery of the abdomen. New York: Springer; 2004. p. 139–42.CrossRefGoogle Scholar
  9. 9.
    Biss K, Ho KJ, Mikkelson BS. Some unique biologic characteristics of the Masai of East Africa. N Engl J Med. 1971;284:694–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Bobryshev YV. Subset of cells immunopositive for neurokinin-1 receptor identified as arterial interstitial cells of Cajal in human large arteries. Cell Tissue Res. 2005;321:45–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Bouchier TA. Gallstones. Proc R Soc Med. 1977;70(9):597–9.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Cajal RS. Histologie du systeme nerveux de l’Homme et de Vertebres. Grand sympathique, Paris, 1911, Maloine.Google Scholar
  13. 13.
    Campeanu RA, Radu BM, Cretoiu SM, Banciu DD, Banciu A, Cretoiu D, Popescu LM. Near-infrared low-level laser stimulation of telocytes from human myometrium. Lasers Med Sci. 2014;29:1867–74.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cantarero I, Luesma MJ, Junquera C. The primary cilium of telocytes in the vasculature: electron microscope imaging. J Cell Mol Med. 2011;15:2594–600.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ceafalan L, Gherghiceanu M, Popescu LM, Simionescu O. Telocytes in human skin–are they involved in skin regeneration? J Cell Mol Med. 2012;16:1405–20.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chen Q, Amaral J, Biancani P, Behar J. Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology. 1999;116:678–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Chi C, Jiang XJ, Su L, Shen ZJ, Yang XJ. In vitro morphology, viability and cytokine secretion of uterine telocyte-activated mouse peritoneal macrophages. J Cell Mol Med. 2015;19(12):2741–50.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ciontea SM, Radu E, Regalia T, Ceafalan L, Cretoiu D, Gherghiceanu M, Braga RI, Malincenco M, Zagrean L, Hinescu ME, Popescu LM. C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J Cell Mol Med. 2005;9:407–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Corradi LS, Jesus MM, Fochi RA, Vilamaior PS, Justulin LA Jr, Góes RM, Felisbino SL, Taboga SR. Structural and ultrastructural evidence for telocytes in prostate stroma. J Cell Mol Med. 2013. In press: doi:10.1111/jcmm.12021.
  20. 20.
    Cretoiu D, Cretoiu SM, Simionescu AA, Popescu LM. Telocytes, a distinct type of cell among the stromal cells present in the lamina propria of jejunum. Histol Histopathol. 2012;27:1067–78.PubMedGoogle Scholar
  21. 21.
    Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145:357–70.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cretoiu SM, Cretoiu D, Popescu LM. Human myometrium – the ultrastructural 3D network of telocytes. J Cell Mol Med. 2012;16:2844–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cretoiu SM, Popescu LM. Telocytes revisited. Biomol Concepts. 2014;5(5):353–69. doi:10.1515/bmc-2014-0029.PubMedCrossRefGoogle Scholar
  24. 24.
    Cretoiu SM, Radu BM, Banciu A, Banciu DD, Cretoiu D, Ceafalan LC, Popescu LM. Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels. Histochem Cell Biol. 2015;143:83–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Cretoiu SM, Simionescu AA, Caravia L, Curici A, Cretoiu D, Popescu LM. Complex effects of imatinib on spontaneous and oxytocin-induced contractions in human non-pregnant myometrium. Acta Physiol Hung. 2011;98:329–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Dawidowicz J, Szotek S, Matysiak N, Mielańczyk L, Maksymowicz K. Electron microscopy of human fascia lata: focus on telocytes. J Cell Mol Med. 2015;19(10):2500–6. doi:10.1111/jcmm.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Dray X, Joly F, Reijasse D, Attar A, Alves A, Panis Y, Valleur P, Messing B. Incidence, risk factors, and complications of cholelithiasis in patients with home parenteral nutrition. J Am Coll Surg. 2007;204:13–21.PubMedCrossRefGoogle Scholar
  28. 28.
    Duquette R, Shmygol A, Vaillant C, Mobasheri A, Pope M, Burdyga T, Wray S. Vimentin-positive, c-kit negative interstitial cells in human and rat uterus: a role in pacemaking? Biol Reprod. 2005;72:276–83.PubMedCrossRefGoogle Scholar
  29. 29.
    Edelstein L, Smythies J. The role of telocytes in morphogenetic bioelectrical signaling: once more unto the breach. Front Mol Neurosci. 2014;7:41.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Einarsson K, Nilsell K, Leijd B, Angelin B. Influence of age on secretion of cholesterol and synthesis of bile acids by the liver. N Engl J Med. 1985;313:277–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Enciu AM, Popescu LM. Telopodes of telocytes are influenced in vitro by redox conditions and ageing. Mol Cell Biochem. 2015;410(1–2):165–74. doi:10.1007/s11010-015-2548-2.PubMedCrossRefGoogle Scholar
  32. 32.
    Everhart JE, Khare M, Hill M, Maurer KR. Prevalence and ethnic differences in gallbladder. Gastroenterology. 1999;117(3):632.PubMedCrossRefGoogle Scholar
  33. 33.
    Faussone-Pellegrini MS, Popescu LM. Telocytes. Biomol Concepts. 2011;2:481–9.PubMedGoogle Scholar
  34. 34.
    Friedman GD, Raviola CA, Fireman B. Prognosis of gallstones with mild or no symptoms: 25 years of follow-up in a health maintenance organization. J Clin Epidemiol. 1989;42:127–36.PubMedCrossRefGoogle Scholar
  35. 35.
    Gevaert T, De Vos R, Everaerts W, Libbrecht L, Van Der Aa F, van den Oord J, Roskams T, De Ridder D. Characterization of upper lamina propria interstitial cells in bladders from patients with neurogenic detrusor overactivity and bladder pain syndrome. J Cell Mol Med. 2011;15:2586–93.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gevaert T, De Vos R, Van Der Aa F, Joniau S, van den Oord J, Roskams T, De Ridder D. Identification of telocytes in the upper lamina propria of the human urinary tract. J Cell Mol Med. 2012;16:2085–93.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gherghiceanu M, Popescu LM. Cardiac telocytes – their junctions and functional implications. Cell Tissue Res. 2012;348:265–79.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gherghiceanu M, Popescu LM. Heterocellular communication in the heart: electron tomography of telocyte-myocyte junctions. J Cell Mol Med. 2011;15:1005–11.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscope (TEM) identification. J Cell Mol Med. 2005;9:893–910.PubMedCrossRefGoogle Scholar
  40. 40.
    Gibbons SJ, De Giorgio R, Faussone-Pellegrini MS, Garrity-Park MM, Miller SM, Schmalz PF, Young-Fadok TM, Larson DW, Dozois EJ, Camilleri M, Stanghellini V, Szurszewski JH, Farrugia G. Apoptotic cell death of human interstitial cells of Cajal. Neurogastroenterol Motil. 2009;21:85–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Gordon-Taylor G. On gallstones and their sufferers. Br J Surg. 1937;25:241–51.CrossRefGoogle Scholar
  42. 42.
    Harhun MI, Pucovsky V, Povstyan OV, Gordienko DV, Bolton TB. Interstitial cells in the vasculature. J Cell Mol Med. 2005;9:232–43.PubMedCrossRefGoogle Scholar
  43. 43.
    Hatta K, Huang ML, Weisel RD, Li RK. Culture of rat endometrial telocytes. J Cell Mol Med. 2012;16:1392–6.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Heuman DM. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J Lipid Res. 1989;30(5):719–30.PubMedGoogle Scholar
  45. 45.
    Hinescu ME, Ardeleanu C, Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells in human gallbladder. J Mol Histol. 2007;38:275–84.PubMedCrossRefGoogle Scholar
  46. 46.
    Hu WM, Luo HS, Ding XW, Wang L. Expression of c-kit messenger ribonucleic acid and c-kit protein in the gallbladders in guinea pigs of high cholesterol diet. Dig Dis Sci. 2009;54:1651–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Humbert L, Maubert MA, Wolf C, Duboc H, Mahé M, Farabos D, Seksik P, Mallet JM, Trugnan G, Masliah J, Rainteau D. Bile acid profiling in human biological samples: comparison of extraction procedures and application to normal and cholestatic patients. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;899:135–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Jüngst D, Brenner G, Pratschke E, Paumgartner G. Low-dose ursodeoxycholic acid prolongs cholesterol nucleation time in gallbladder bile of patients with cholesterol gallstones. J Hepatol. 1989;8(1):1–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Kim JK, Cho SM, Kang SH, Kim E, Yi H, Yun ES, Lee DG, Cho HJ, Paik YH, Choi YK, Haam SJ, Shin HC, Lee DK. N-3 polyunsaturated fatty acid attenuates cholesterol gallstones by suppressing mucin production with a high cholesterol diet in mice. J Gastroenterol Hepatol. 2012;27(11):1745–51. doi:10.1111/j.1440-1746.2012.07227.x.PubMedCrossRefGoogle Scholar
  50. 50.
    Kurtin WE, Schwesinger WH, Diehl AK. Age-related changes in the chemical composition of gallstones. Int J Surg Investig. 2000;2:299–307.PubMedGoogle Scholar
  51. 51.
    LaMont JT, Smith BF, Moore JR. Role of gallbladder mucin in pathophysiology of gallstones. Hepatology. 1984;4:51S–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Lang RJ, Klemm MF. Interstitial cell of Cajal-like cells in the upper urinary tract. J Cell Mol Med. 2005;9:543–56.PubMedCrossRefGoogle Scholar
  53. 53.
    Lavoie B, Balemba OB, Nelson MT, Ward SM, Mawe GM. Morphological and physiological evidence for interstitial cell of Cajal-like cells in the guinea pig gallbladder. J Physiol. 2007;579:487–501.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lavoie B, Nausch B, Zane EA, Leonard MR, Balemba OB, Bartoo AC, Wilcox R, Nelson MT, Carey MC, Mawe GM. Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease. Neurogastroenterol Motil. 2012;24(7):e313–24. doi:10.1111/j.1365-2982.2012.01935.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lee DK, Jang SI. Can fish oil dissolve gallstones? J Gastroenterol Hepatol. 2012;27(11):1649–51. doi:10.1111/j.1440-1746.2012.07234.x.PubMedCrossRefGoogle Scholar
  56. 56.
    Li L, Lin M, Li L, Wang R, Zhang C, Qi G, Xu M, Rong R, Zhu T. Renal telocytes contribute to the repair of ischemically injured renal tubules. J Cell Mol Med. 2014;18:1144–56.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Litynski GS. Profiles in laparoscopy: Mouret, Dubois, and Perissat: the laparoscopic breakthrough in Europe (1987–1988). JSLS. 1999;3(2):163–7.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Lopis S. The incidence cholelithiasis in the Bantu. Clin Proc Child Hosp Dist Columbia. 1947;3:338.Google Scholar
  59. 59.
    Matyja A, Gil K, Pasternak A, Sztefko K, Gajda M, Tomaszewski KA, Matyja M, Walocha JA, Kulig J, Thor P. Telocytes: new insight into the pathogenesis of gallstone disease. J Cell Mol Med. 2013;17(6):734–42.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    McCloskey KD, Hollywood MA, Thornbury KD, Ward SM, McHale NG. Kit-like immunopositive cells in sheep mesenteric lymphatic vessels. Cell Tissue Res. 2002;310:77–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Morgenstern L. Carl Langenbuch and the first cholecystectomy. Surg Endosc. 1992;6(3):113–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Moschetta A, Stolk MF, Rehfeld JF, Portincasa P, Slee PH, Koppeschaar HP, Van Erpecum KJ, Vanberge-Henegouwen GP. Severe impairment of postprandial cholecystokinin release and gall-bladder emptying and high risk of gallstone formation in acromegalic patients during Sandostatin LAR. Aliment Pharmacol Ther. 2001;15:181–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Moschetta A, van Berge-Henegouwen GP, Portincasa P, Palasciano G, van Erpecum KJ. Cholesterol crystallization in model biles: effects of bile salt and phospholipid species composition. J Lipid Res. 2001;42(8):1273–81.PubMedGoogle Scholar
  64. 64.
    Nicolescu MI, Bucur A, Dinca O, Rusu MC, Popescu LM. Telocytes in parotid glands. Anat Rec (Hoboken). 2012;295:378–85.CrossRefGoogle Scholar
  65. 65.
    Nicolescu MI, Popescu LM. Telocytes in the interstitium of human exocrine pancreas: ultrastructural evidence. Pancreas. 2012;41:949–56.PubMedCrossRefGoogle Scholar
  66. 66.
    Niculite CM, Regalia TM, Gherghiceanu M, Huica R, Surcel M, Ursaciuc C, Leabu M, Popescu LM. Dynamics of telopodes (telocytes prolongations) in cell culture depends on extracellular matrix protein. Mol Cell Biochem. 2015;398:157–64.PubMedCrossRefGoogle Scholar
  67. 67.
    Njeze GE. Gallstones. Niger J Surg. 2013;19(2):49–55. doi:10.4103/1117-6806.119236.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Pasternak A, Gajda M, Gil K, Matyja A, Tomaszewski KA, Walocha JA, Kulig J, Thor P. Evidence of interstitial Cajal-like cells in human gallbladder. Folia Histochem Cytobiol. 2012;50(4):581–5. doi:10.5603/19673.PubMedCrossRefGoogle Scholar
  69. 69.
    Pasternak A, Gil K, Matyja A, Gajda M, Sztefko K, Walocha JA, Kulig J, Thor P. Loss of gallbladder interstitial Cajal-like cells in patients with cholelithiasis. Neurogastroenterol Motil. 2013;25(1):e17–24. doi:10.1111/nmo.12037. Epub 2012 Nov 1.PubMedCrossRefGoogle Scholar
  70. 70.
    Paumgartner G, Gerok W, Bertolotti M, Bortolotti S, Menozzi D. Ageing and bile acid metabolism: studies on 7α hydroxylation of cholesterol in humans. In: Paumgartner G, Gerok W, editors. Trends in bile acid research. Lancaster: Kluwer Academic Publishers; 1989. p. 75–8.Google Scholar
  71. 71.
    Paumgartner G, Sauerbruch T. Gallstones: pathogenesis. Lancet. 1991;338:1117–21.PubMedCrossRefGoogle Scholar
  72. 72.
    Pomare EW, Heaton KW. Bile salt metabolism in patients with gallstones in functioning gallbladders. Gut. 1973;14(11):885–90.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pomeranz IS, Shaffer EA. Abnormal gallbladder emptying in a subgroup of patients with gallstones. Gastroenterology. 1985;88:787–91.PubMedCrossRefGoogle Scholar
  74. 74.
    Popescu BO, Gherghiceanu M, Kostin S, Ceafalan L, Popescu LM. Telocytes in meninges and choroid plexus. Neurosci Lett. 2012;516:265–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Popescu LM, Andrei F, Hinescu ME. Snapshots of mammary gland interstitial cells: methylene-blue vital staining and c-kit immunopositivity. J Cell Mol Med. 2005;9:476–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Popescu LM, Ciontea SM, Cretoiu D. Interstitial Cajal-like cells in human uterus and fallopian tube. Ann N Y Acad Sci. 2007;1101:139–65.PubMedCrossRefGoogle Scholar
  77. 77.
    Popescu LM, Faussone-Pellegrini MS. TELOCYTES – a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010;14:729–40.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011;345:391–403.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Popescu LM, Hinescu ME, Ionescu N, Ciontea SM, Cretoiu D, Ardeleanu C. Interstitial cells of Cajal in pancreas. J Cell Mol Med. 2005;9:169–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Popescu LM, Manole E, Serboiu CS, Manole CG, Suciu LC, Gherghiceanu M, Popescu BO. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med. 2011;15(6):1379–92. doi:10.1111/j.1582-4934.2011.01330.x.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Popescu LM, Nicolescu MI. Telocytes and stem cells. In: dos Santos Goldenberg RC, Campos de Carvalho AC, editors. Resident stem cells and regenerative therapy. Oxford: Academic; 2013. p. 205–31. doi:10.1016/B978-0-12-416012-5.00011-6.CrossRefGoogle Scholar
  82. 82.
    Portincasa P, Di Ciaula A, Vendemiale G, Palmieri V, Moschetta A, Vanberge-Henegouwen GP, Palasciano G. Gallbladder motility and cholesterol crystallization in bile from patients with pigment and cholesterol gallstones. Eur J Clin Invest. 2000;30:317–24.PubMedCrossRefGoogle Scholar
  83. 83.
    Portincasa P, Moschetta A, Palasciano G. Cholesterol gallstone disease. Lancet. 2006;368(9531):230–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Portincasa P, Moschetta A, van Erpecum KJ, Calamita G, Margari A, van Berge-Henegouwen GP, Palasciano G. Pathways of cholesterol crystallization in model bile and native bile. Dig Liver Dis. 2003;35(2):118–26.PubMedCrossRefGoogle Scholar
  85. 85.
    Qi G, Lin M, Xu M, Manole CG, Wang X, Zhu T. Telocytes in the human kidney cortex. J Cell Mol Med. 2012;16:3116–22.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Radu E, Regalia T, Ceafalan L, Andrei F, Cretoiu D, Popescu LM. Cajal-type cells from human mammary gland stroma: phenotype characteristics in cell culture. J Cell Mol Med. 2005;9:748–52.PubMedCrossRefGoogle Scholar
  87. 87.
    Roatesi I, Radu BM, Cretoiu D, Cretoiu SM. Uterine telocytes: a review of current knowledge. Biol Reprod. 2015;93(1):10, 1–13. doi:10.1095/biolreprod.114.125906.CrossRefGoogle Scholar
  88. 88.
    Sandler RS, Everhart JE, Donowitz M, Adams E, Cronin K, Goodman C, Gemmen E, Shah S, Avdic A, Rubin R. The burden of selected digestive diseases in the United States. Gastroenterology. 2002;122:1500–11.PubMedCrossRefGoogle Scholar
  89. 89.
    Sergeant GP, Thornbury KD, McHale NG, Hollywood MA. Interstitial cells of Cajal in the urethra. J Cell Mol Med. 2006;10:280–91.PubMedCrossRefGoogle Scholar
  90. 90.
    Shaffer EA. Gallstone disease: epidemiology of gallbladder stone disease. Best Pract Res Clin Gastroenterol. 2006;20:981–96.PubMedCrossRefGoogle Scholar
  91. 91.
    Shaffer EA. The role of the gallbladder in gallstone formation. In: Fisher MM, Goresky CA, Shaffer EA, Strasberg SM, editors. Gallstones. New York: Plenum; 1979. p. 223–49.CrossRefGoogle Scholar
  92. 92.
    Sharma BC, Agarwal DK, Dhiman RK, Baijal SS, Choudhuri G, Saraswat VA. Bile lithogenicity and gallbladder emptying in patients with microlithiasis: effect of bile acid therapy. Gastroenterology. 1998;115:124–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Shehadi WH. The biliary system through the ages. Int Surg. 1979;64:63–78.PubMedGoogle Scholar
  94. 94.
    Shepherd JA. The contribution of Robert Lawson Tait to the development of abdominal surgery. Surg Annu. 1986;18:339–49.PubMedGoogle Scholar
  95. 95.
    Sitzmann JV, Pitt HA, Steinborn PA, Pasha ZR, Sanders RC. Cholecystokinin prevents parenteral nutrition induced biliary sludge in humans. Surg Gynecol Obstet. 1990;170:25–31.PubMedGoogle Scholar
  96. 96.
    Smythies J, Edelstein L. Telocytes, exosomes, gap junctions and the cytoskeleton: the makings of a primitive nervous system? Front Cell Neurosci. 2013;7:278. doi:10.3389/fincel.2013.00278.Google Scholar
  97. 97.
    Suciu L, Popescu LM, Gherghiceanu M, Regalia T, Nicolescu MI, Hinescu ME, Faussone-Pellegrini MS. Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs. 2010;192:325–39.PubMedCrossRefGoogle Scholar
  98. 98.
    Thistle JL, Cleary PA, Lachin JM, Tyor MP, Hersh T. The natural history of cholelithiasis: The National Cooperative Gallstone Study. Ann Intern Med. 1984;101:171–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Torihashi S, Nishi K, Tokutomi Y, Nishi T, Ward S, Sanders KM. Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype. Gastroenterology. 1999;117:140–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Trotman BW. Pigment gallstone disease. Gastroenterol Clin North Am. 1991;20:111–26.PubMedGoogle Scholar
  101. 101.
    Valdivieso V, Covarrubias C, Siegel F, Cruz F. Pregnancy and cholelithiasis: pathogenesis and natural course of gallstones diagnosed in early puerperium. Hepatology. 1993;17(1):1–4.PubMedGoogle Scholar
  102. 102.
    van Erpecum KJ, Venneman NG, Portincasa P, Vanberge-Henegouwen GP. Review article: agents affecting gall-bladder motility – role in treatment and prevention of gallstones. Aliment Pharmacol Ther. 2000;14 Suppl 2:66–70.PubMedCrossRefGoogle Scholar
  103. 103.
    van Erpecum KJ. Biliary lipids, water and cholesterol gallstones. Biol Cell. 2005;97(11):815–22.PubMedCrossRefGoogle Scholar
  104. 104.
    van Gulik TM. Langenbuch’s cholecystectomy, once a remarkably controversial operation. Neth J Surg. 1986;38(5):138–41.PubMedGoogle Scholar
  105. 105.
    Vannucchi MG, Traini C, Guasti D, Giulio DP, Faussone-Pellegrini MS. Telocytes subtypes in human urinary bladder. J Cell Mol Med. 2014;18:2000–8.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Vázquez MC, Rigotti A, Zanlungo S. Molecular mechanisms underlying the link between nuclear receptor function and cholesterol gallstone formation. J Lipids. 2012;2012:547643. doi:10.1155/2012/547643. Epub 2011 Nov 1.PubMedCrossRefGoogle Scholar
  107. 107.
    Venneman NG, van Erpecum KJ. Pathogenesis of gallstones. Gastroenterol Clin North Am. 2010;39(2):171–83.PubMedCrossRefGoogle Scholar
  108. 108.
    Wang DQ, Carey MC. Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences. J Lipid Res. 1996;37:2539–49.PubMedGoogle Scholar
  109. 109.
    Wang DQ, Schmitz F, Kopin AS, Carey MC. Targeted disruption of the murine cholecystokinin-1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. J Clin Invest. 2004;114:521–8.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Wang DQH, Carey MC. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems. J Lipid Res. 1996;37:606–30.PubMedGoogle Scholar
  111. 111.
    Wang J, Ye L, Jin M, Wang X. Global analyses of chromosome 17 and 18 genes of lung telocytes compared with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes. Biol Direct. 2015;10(1):9. doi:10.1186/s13062-015-0042-0.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Xu QW, Shaffer EA. The potential site of impaired gallbladder contractility in an animal model of cholesterol gallstone disease. Gastroenterology. 1996;110:251–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Yang H, Petersen GM, Roth MP, Schoenfield LJ, Marks JW. Risk factors for gallstone formation during rapid loss of weight. Dig Dis Sci. 1992;37:912–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Yang XJ, Yang J, Liu Z, Yang G, Shen ZJ. Telocytes damage in endometriosis-affected rat oviduct and potential impact on fertility. J Cell Mol Med. 2014. doi:10.1111/jcmm.12427.Google Scholar
  115. 115.
    Zheng Y, Zhu T, Lin M, Wu D, Wang X. Telocytes in the urinary system. J Transl Med. 2012;10:188. doi:10.1186/1479-5876-10-188.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Artur Pasternak
    • 1
    • 2
  • Krzysztof Gil
    • 3
  • Andrzej Matyja
    • 1
  1. 1.First Department of General, Oncological and Gastrointestinal SurgeryJagiellonian University Medical CollegeKrakowPoland
  2. 2.Department of AnatomyJagiellonian University Medical CollegeKrakowPoland
  3. 3.Department of PathophysiologyJagiellonian University Medical CollegeKrakowPoland

Personalised recommendations