Telocytes pp 51-76

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 913) | Cite as

Telocytes in Chronic Inflammatory and Fibrotic Diseases

Chapter

Abstract

Telocytes are a peculiar stromal (interstitial) cell type implicated in tissue homeostasis and development, as well as in the pathophysiology of several disorders. Severe damage and reduction of telocytes have been reported during fibrotic remodeling of multiple organs in various diseases, including scleroderma, Crohn’s disease, ulcerative colitis, and liver fibrosis, as well as in chronic inflammatory lesions like those of primary Sjögren’s syndrome and psoriasis. Owing to their close relationship with stem cells, telocytes are also supposed to contribute to tissue repair/regeneration. Indeed, telocytes are universally considered as “connecting cells” mostly oriented to intercellular signaling. On the basis of recent promising experimental findings, in the near future, telocyte transplantation might represent a novel therapeutic opportunity to control the evolution of chronic inflammatory and fibrotic diseases. Notably, there is evidence to support that telocytes could help in preventing abnormal activation of immune cells and fibroblasts, as well as in attenuating the altered matrix organization during the fibrotic process. By targeting telocytes alone or in tandem with stem cells, we might be able to promote regeneration and prevent the evolution to irreversible tissue injury. Besides exogenous transplantation, exploring pharmacological or non-pharmacological methods to enhance the growth and/or survival of telocytes could be an additional therapeutic strategy for many disorders.

Keywords

Chronic inflammation Fibrosis Pathology Stromal cells Telocytes 

References

  1. 1.
    Hay ED. Cell and extracellular matrix: their organization and mutual dependence. Mod Cell Biol. 1983;2:509–48.Google Scholar
  2. 2.
    Doljanski F. The sculpturing role of fibroblast-like cells in morphogenesis. Perspect Biol Med. 2004;47:339–56.PubMedCrossRefGoogle Scholar
  3. 3.
    Barone F, Nayar S, Buckley CD. The role of non-hematopoietic stromal cells in the persistence of inflammation. Front Immunol. 2013;3:416.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Naylor AJ, Filer A, Buckley CD. The role of stromal cells in the persistence of chronic inflammation. Clin Exp Immunol. 2013;171:30–5.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    McGettrick HM, Smith E, Filer A, et al. Fibroblasts from different sites may promote or inhibit recruitment of flowing lymphocytes by endothelial cells. Eur J Immunol. 2009;39:113–25.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Corsiero E, Bombardieri M, Manzo A, et al. Role of lymphoid chemokines in the development of functional ectopic lymphoid structures in rheumatic autoimmune diseases. Immunol Lett. 2012;145:62–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Pitzalis C, Jones GW, Bombardieri M, et al. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol. 2014;14:47–62.CrossRefGoogle Scholar
  8. 8.
    van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol. 2010;10:664–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–40.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hinz B, Phan SH, Thannickal VJ, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012;180:1340–55.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Popescu LM, Faussone-Pellegrini MS. Telocytes – a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to telocytes. J Cell Mol Med. 2010;14:729–40.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Faussone-Pellegrini MS, Popescu LM. Telocytes. Biomol Concepts. 2011;2:481–9.PubMedGoogle Scholar
  14. 14.
    Cretoiu SM, Popescu LM. Telocytes revisited. Biomol Concepts. 2014;5:353–69.PubMedCrossRefGoogle Scholar
  15. 15.
    Kang Y, Zhu Z, Zheng Y, et al. Skin telocytes versus fibroblasts: two distinct dermal cell populations. J Cell Mol Med. 2015;19:2530–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bei Y, Zhou Q, Fu S, et al. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS One. 2015;18(10):e0115991.CrossRefGoogle Scholar
  17. 17.
    Díaz-Flores L, Gutiérrez R, García MP, et al. CD34+ stromal cells/fibroblasts/fibrocytes/telocytes as a tissue reserve and a principal source of mesenchymal cells. Location, morphology, function and role in pathology. Histol Histopathol. 2014;29:831–70.PubMedGoogle Scholar
  18. 18.
    Vannucchi MG, Traini C, Manetti M, et al. Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med. 2013;17:1099–108.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zhou Q, Wei L, Zhong C, et al. Cardiac telocytes are double positive for CD34/PDGFR-α. J Cell Mol Med. 2015;19:2036–42.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Pieri L, Vannucchi MG, Faussone-Pellegrini MS. Histochemical and ultrastructural characteristics of an interstitial cell type different from ICC and resident in the muscle coat of human gut. J Cell Mol Med. 2008;12:1944–55.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ceafalan L, Gherghiceanu M, Popescu LM, et al. Telocytes in human skin–are they involved in skin regeneration? J Cell Mol Med. 2012;16:1405–20.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Manetti M, Guiducci S, Ruffo M, et al. Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. J Cell Mol Med. 2013;17:482–96.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Milia AF, Ruffo M, Manetti M, et al. Telocytes in Crohn’s disease. J Cell Mol Med. 2013;17:1525–36.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kostin S, Popescu LM. A distinct type of cell in myocardium: interstitial Cajal-like cells (ICLCs). J Cell Mol Med. 2009;13:295–308.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zheng Y, Li H, Manole CG, et al. Telocytes in trachea and lungs. J Cell Mol Med. 2011;15:2262–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Popescu LM, Gherghiceanu M, Suciu LC, et al. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011;345:391–403.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Manetti M, Rosa I, Messerini L, et al. Telocytes are reduced during fibrotic remodelling of the colonic wall in ulcerative colitis. J Cell Mol Med. 2015;19:62–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Alunno A, Ibba-Manneschi L, Bistoni O, et al. Telocytes in minor salivary glands of primary Sjögren’s syndrome: association with the extent of inflammation and ectopic lymphoid neogenesis. J Cell Mol Med. 2015;19:1689–96.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Manetti M, Rosa I, Messerini L, et al. A loss of telocytes accompanies fibrosis of multiple organs in systemic sclerosis. J Cell Mol Med. 2014;18:253–62.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sun X, Zheng M, Zhang M, et al. Differences in the expression of chromosome 1 genes between lung telocytes and other cells: mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells and lymphocytes. J Cell Mol Med. 2014;18:801–10.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zheng M, Sun X, Zhang M, et al. Variations of chromosomes 2 and 3 gene expression profiles among pulmonary telocytes, pneumocytes, airway cells, mesenchymal stem cells and lymphocytes. J Cell Mol Med. 2014;18:2044–60.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wang J, Ye L, Jin M, et al. Global analyses of chromosome 17 and 18 genes of lung telocytes compared with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes. Biol Direct. 2015;10:9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zhu Y, Zheng M, Song D, et al. Global comparison of chromosome X genes of pulmonary telocytes with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes. J Transl Med. 2015;13:318.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zheng Y, Cretoiu D, Yan G, et al. Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics. J Cell Mol Med. 2014;18:1035–59.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zheng Y, Cretoiu D, Yan G, et al. Comparative proteomic analysis of human lung telocytes with fibroblasts. J Cell Mol Med. 2014;18:568–89.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Albulescu R, Tanase C, Codrici E, et al. The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med. 2015;19:1783–94.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cismasiu VB, Radu E, Popescu LM. miR-193 expression differentiates telocytes from other stromal cells. J Cell Mol Med. 2011;15:1071–4.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zheng Y, Zhang M, Qian M, et al. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. J Cell Mol Med. 2013;17:567–77.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Cretoiu D, Hummel E, Zimmermann H, et al. Human cardiac telocytes: 3D imaging by FIB-SEM tomography. J Cell Mol Med. 2014;18:2157–64.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Faussone-Pellegrini MS, Bani D. Relationships between telocytes and cardiomyocytes during pre- and post-natal life. J Cell Mol Med. 2010;14:1061–3.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Bani D, Formigli L, Gherghiceanu M, et al. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010;14:2531–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gherghiceanu M, Popescu LM. Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med. 2010;14:871–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Luesma MJ, Gherghiceanu M, Popescu LM. Telocytes and stem cells in limbus and uvea of mouse eye. J Cell Mol Med. 2013;17:1016–24.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Popescu LM, Gherghiceanu M, Manole CG, et al. Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med. 2009;13:866–86.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gherghiceanu M, Manole CG, Popescu LM. Telocytes in endocardium: electron microscope evidence. J Cell Mol Med. 2010;14:2330–4.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cretoiu D, Cretoiu SM, Simionescu AA, et al. Telocytes, a distinct type of cell among the stromal cells present in the lamina propria of jejunum. Histol Histopathol. 2012;27:1067–78.PubMedGoogle Scholar
  47. 47.
    Popescu LM, Gherghiceanu M, Cretoiu D, et al. The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ. J Cell Mol Med. 2005;9:714–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Rusu MC, Mirancea N, Mănoiu VS, et al. Skin telocytes. Ann Anat. 2012;194:359–67.PubMedCrossRefGoogle Scholar
  49. 49.
    Cismaşiu VB, Popescu LM. Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells. J Cell Mol Med. 2015;19:351–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Manole CG, Cismasiu V, Gherghiceanu M, et al. Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med. 2011;15:2284–96.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fertig ET, Gherghiceanu M, Popescu LM. Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med. 2014;18:1938–43.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Smythies J, Edelstein L. Telocytes, exosomes, gap junctions and the cytoskeleton: the makings of a primitive nervous system? Front Cell Neurosci. 2014;7:278.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cretoiu D, Gherghiceanu M, Hummel E, et al. FIB-SEM tomography of human skin telocytes and their extracellular vesicles. J Cell Mol Med. 2015;19:714–22.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cretoiu SM, Cretoiu D, Marin A, et al. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145:357–70.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bei Y, Wang F, Yang C, et al. Telocytes in regenerative medicine. J Cell Mol Med. 2015;19:1441–54.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Cretoiu SM, Radu BM, Banciu A, et al. Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels. Histochem Cell Biol. 2015;143:83–94.PubMedCrossRefGoogle Scholar
  57. 57.
    Sheng J, Shim W, Lu J, et al. Electrophysiology of human cardiac atrial and ventricular telocytes. J Cell Mol Med. 2014;18:355–62.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Manole CG, Gherghiceanu M, Simionescu O. Telocyte dynamics in psoriasis. J Cell Mol Med. 2015;19:1504–19.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Fu S, Wang F, Cao Y, et al. Telocytes in human liver fibrosis. J Cell Mol Med. 2015;19:676–83.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zheng Y, Bai C, Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012;6:45–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Zheng Y, Bai C, Wang X. Telocyte morphologies and potential roles in diseases. J Cell Physiol. 2012;227:2311–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Matyja A, Gil K, Pasternak A, et al. Telocytes: new insight into the pathogenesis of gallstone disease. J Cell Mol Med. 2013;17:734–42.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yang J, Chi C, Liu Z, et al. Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis. J Cell Mol Med. 2015;19:1720–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Richter M, Kostin S. The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition. J Cell Mol Med. 2015;19:2597–606.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zhao B, Chen S, Liu J, et al. Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat. J Cell Mol Med. 2013;17:123–33.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhao B, Liao Z, Chen S, et al. Intramyocardial transplantation of cardiac telocytes decreases myocardial infarction and improves post-infarcted cardiac function in rats. J Cell Mol Med. 2014;18:780–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117:557–67.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009;360:1989–2003.PubMedCrossRefGoogle Scholar
  69. 69.
    Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol. 2011;8:42–54.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Manetti M, Guiducci S, Ibba-Manneschi L, et al. Mechanisms in the loss of capillaries in systemic sclerosis: angiogenesis versus vasculogenesis. J Cell Mol Med. 2010;14:1241–54.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Manetti M, Guiducci S, Romano E, et al. Differential expression of junctional adhesion molecules in different stages of systemic sclerosis. Arthritis Rheum. 2013;65:247–57.PubMedCrossRefGoogle Scholar
  72. 72.
    Manneschi LI, Del Rosso A, Milia AF, et al. Damage of cutaneous peripheral nervous system evolves differently according to the disease phase and subset of systemic sclerosis. Rheumatology. 2005;44:607–13.PubMedCrossRefGoogle Scholar
  73. 73.
    Jain S, Shahane A, Derk CT. Interstitial lung disease in systemic sclerosis: pathophysiology, current and new advances in therapy. Inflamm Allergy Drug Targets. 2012;11:266–77.PubMedCrossRefGoogle Scholar
  74. 74.
    Meune C, Vignaux O, Kahan A, et al. Heart involvement in systemic sclerosis: evolving concept and diagnostic methodologies. Arch Cardiovasc Dis. 2010;103:46–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Sallam H, McNearney TA, Chen JD. Systematic review: pathophysiology and management of gastrointestinal dysmotility in systemic sclerosis (scleroderma). Aliment Pharmacol Ther. 2006;23:691–712.PubMedCrossRefGoogle Scholar
  76. 76.
    Manetti M, Neumann E, Milia AF, et al. Severe fibrosis and increased expression of fibrogenic cytokines in the gastric wall of systemic sclerosis patients. Arthritis Rheum. 2007;56:3442–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Roberts CG, Hummers LK, Ravich WJ, et al. A case-controlled study of the pathology of esophageal disease in systemic sclerosis (scleroderma). Gut. 2006;55:1697–703.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wei J, Bhattacharyya S, Tourtellotte WG, et al. Fibrosis in systemic sclerosis: emerging concepts and implications for targeted therapy. Autoimmun Rev. 2011;10:267–75.PubMedCrossRefGoogle Scholar
  79. 79.
    Ebmeier S, Horsley V. Origin of fibrosing cells in systemic sclerosis. Curr Opin Rheumatol. 2015;27:555–62.PubMedCrossRefGoogle Scholar
  80. 80.
    Popescu LM. The Tandem: telocytes – stem cells. Int J Biol Biomed Eng. 2011;5:83–92.Google Scholar
  81. 81.
    Gherghiceanu M, Popescu LM. Heterocellular communication in the heart: electron tomography of telocyte-myocyte junctions. J Cell Mol Med. 2011;15:1005–11.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Manetti M, Milia AF, Benelli G, et al. The gastric wall in systemic sclerosis patients: a morphological study. Ital J Anat Embryol. 2010;115:115–21.PubMedGoogle Scholar
  83. 83.
    Rieder F, Fiocchi C. Intestinal fibrosis in inflammatory bowel disease – current knowledge and future perspectives. J Crohns Colitis. 2008;2:279–90.PubMedCrossRefGoogle Scholar
  84. 84.
    Baumgard DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–605.CrossRefGoogle Scholar
  85. 85.
    Maul J, Zeitz M. Ulcerative colitis: immune function, tissue fibrosis and current therapeutic considerations. Langenbecks Arch Surg. 2012;397:1–10.PubMedCrossRefGoogle Scholar
  86. 86.
    Latella G, Sferra R, Speca S, et al. Can we prevent, reduce or reverse intestinal fibrosis in IBD? Eur Rev Med Pharmacol Sci. 2013;17:1283–304.PubMedGoogle Scholar
  87. 87.
    Yamagata M, Mikami T, Tsuruta T, et al. Submucosal fibrosis and basic-fibroblast growth factor-positive neutrophils correlate with colonic stenosis in cases of ulcerative colitis. Digestion. 2011;84:12–21.PubMedCrossRefGoogle Scholar
  88. 88.
    Gordon IO, Agrawal N, Goldblum JR, et al. Fibrosis in ulcerative colitis: mechanisms, features, and consequences of a neglected problem. Inflamm Bowel Dis. 2014;20:2198–206.PubMedCrossRefGoogle Scholar
  89. 89.
    Rieder F, Fiocchi C. Intestinal fibrosis in inflammatory bowel disease: progress in basic and clinical science. Curr Opin Gastroenterol. 2008;24:462–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Quigley EM. What we have learned about colonic motility: normal and disturbed. Curr Opin Gastroenterol. 2010;26:53–60.PubMedCrossRefGoogle Scholar
  91. 91.
    Wood JD. Enteric nervous system: reflex, pattern generators and motility. Curr Opin Gastroenterol. 2008;24:149–58.PubMedCrossRefGoogle Scholar
  92. 92.
    Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996;111:492–515.PubMedCrossRefGoogle Scholar
  93. 93.
    Wang XY, Zarate N, Soderholm JD, et al. Ultrastructural injury to interstitial cells of Cajal and communication with mast cells in Crohn’s disease. Neurogastroenterol Motil. 2007;19:349–64.PubMedCrossRefGoogle Scholar
  94. 94.
    Bernardini N, Segnani C, Ippolito C, et al. Immunohistochemical analysis of myenteric ganglia and interstitial cells of Cajal in ulcerative colitis. J Cell Mol Med. 2012;16:318–27.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Bassotti G, Antonelli E, Villanacci V, et al. Gastrointestinal motility disorders in inflammatory bowel diseases. World J Gastroenterol. 2014;20:37–44.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ohlsson B, Veress B, Lindgren S, et al. Enteric ganglioneuritis and abnormal interstitial cells of Cajal: features of inflammatory bowel disease. Inflamm Bowel Dis. 2007;13:721–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Kurahashi M, Nakano Y, Hennig GW, et al. Platelet derived growth factor receptor α-positive cells in the tunica muscularis of human colon. J Cell Mol Med. 2012;16:1397–404.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Vanderwinden JM, Rumessen JJ, De Laet MH, et al. CD34 + cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal. Lab Invest. 1999;79:59–65.PubMedGoogle Scholar
  99. 99.
    Porcher C, Baldo M, Henry M, et al. Deficiency of interstitial cells of Cajal in the small intestine of patients with Crohn’s disease. Am J Gastroenterol. 2002;97:118–25.PubMedCrossRefGoogle Scholar
  100. 100.
    Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:425–56.PubMedCrossRefGoogle Scholar
  101. 101.
    Iwaisako K, Taura K, Koyama Y, et al. Strategies to detect hepatic myofibroblasts in liver cirrhosis of different etiologies. Curr Pathobiol Rep. 2014;2:209–15.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Iwaisako K, Jiang C, Zhang M, et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A. 2014;111:E3297–305.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Xiao J, Wang F, Liu Z, et al. Telocytes in liver: electron microscopic and immunofluorescent evidence. J Cell Mol Med. 2013;17:1537–42.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Wang F, Song Y, Bei Y, et al. Telocytes in liver regeneration: possible roles. J Cell Mol Med. 2014;18:1720–6.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Cornec D, Jamin C, Pers JO. Sjögren’s syndrome: where do we stand, and where shall we go? J Autoimmun. 2014;51:109–14.PubMedCrossRefGoogle Scholar
  107. 107.
    Nocturne G, Mariette X. Advances in understanding the pathogenesis of primary Sjögren’s syndrome. Nat Rev Rheumatol. 2013;9:544–56.PubMedCrossRefGoogle Scholar
  108. 108.
    Greenspan JS, Daniels TE, Talal N, et al. The histopathology of Sjögren’s syndrome in labial salivary gland biopsies. Oral Surg Oral Med Oral Pathol. 1974;37:217–29.PubMedCrossRefGoogle Scholar
  109. 109.
    Nicolescu MI, Bucur A, Dinca O, et al. Telocytes in parotid glands. Anat Rec (Hoboken). 2012;295:378–85.CrossRefGoogle Scholar
  110. 110.
    Kim J, Krueger JG. The immunopathogenesis of psoriasis. Dermatol Clin. 2015;33:13–23.PubMedCrossRefGoogle Scholar
  111. 111.
    Chu CC, Di Meglio P, Nestle FO. Harnessing dendritic cells in inflammatory skin diseases. Semin Immunol. 2011;23:28–41.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Chua RA, Arbiser JL. The role of angiogenesis in the pathogenesis of psoriasis. Autoimmunity. 2009;42:574–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Lidia Ibba-Manneschi
    • 1
  • Irene Rosa
    • 1
  • Mirko Manetti
    • 1
  1. 1.Section of Anatomy and Histology, Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly

Personalised recommendations