Telocytes pp 41-49

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 913) | Cite as

Extracellular Microvesicles (ExMVs) in Cell to Cell Communication: A Role of Telocytes

  • Mariusz Z. Ratajczak
  • Daniel Ratajczak
  • Daniel Pedziwiatr
Chapter

Abstract

There are several mechanisms by which cells communicate with each other. Evidence accumulates that the evolutionary oldest mechanisms of cell-cell communication involves extracellular microvesicles (ExMVs). Generally, these circular membrane fragments enriched for mRNA, miRNA, proteins, and bioactive lipids are released by exocytosis from endosomal compartment or are directly formed by budding from cell surface membranes. ExMVs from endosomal compartment called exosomes are smaller in size ~100 nM as compared to larger ones released from cell membranes that are in size up to 1 μM. In this chapter we will present an emerging link between ExMVs and recently identified novel cell-cell communication network involving a new type of cell known as telocyte. Mounting evidence accumulates that telocytes mediate several of their biological effects in several organs by releasing ExMVs enriched in mRNA, miRNA, proteins, and several biological mediators to the target cells.

Keywords

Extracellular microvesicles (ExMVs) Telocytes Exosomes Ectosomes Multivesicular cargo Cell-cell communication Horizontal transfer of mRNA Membrane lipid rafts 

References

  1. 1.
    Adell MA, Vogel GF, Pakdel M, Müller M, Lindner H, Hess MW, Teis D. Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. J Cell Biol. 2014;205(1):33–49.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Albulescu R, Tanase C, Codrici E, Popescu DI, Cretoiu SM, Popescu LM. The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med. 2015;19(8):1783–94.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, Tetta C, Camussi G. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One. 2012;7(3):e33115.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Camussi G, Quesenberry PJ. Perspectives on the potential therapeutic uses of vesicles. Exosomes Microvesicles. 2013;1(6). doi:10.5772/57393.
  5. 5.
    Cismaşiu VB, Popescu LM. Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells. J Cell Mol Med. 2015;19(2):351–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cretoiu D, Gherghiceanu M, Hummel E, Zimmermann H, Simionescu O, Popescu LM. FIB-SEM tomography of human skin telocytes and their extracellular vesicles. J Cell Mol Med. 2015;19(4):714–22.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cretoiu SM, Popescu LM. Telocytes revisited. Biomol Concepts. 2014;5(5):353–69.CrossRefPubMedGoogle Scholar
  8. 8.
    Creţoiu SM, Creţoiu D, Popescu LM. Human myometrium – the ultrastructural 3D network of telocytes. J Cell Mol Med. 2012;16(11):2844–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145(4):357–70.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Enjeti AK, Lincz LF, Seldon M. Microparticles in health and disease. Semin Thromb Hemost. 2008;34(7):683–91.CrossRefPubMedGoogle Scholar
  11. 11.
    Fertig ET, Gherghiceanu M, Popescu LM. Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med. 2014;18(10):1938–43.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hugel B, Martínez MC, Kunzelmann C, Freyssinet JM. Membrane microparticles: two sides of the coin. Physiology (Bethesda). 2005;20:22–7.CrossRefGoogle Scholar
  13. 13.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30. sup pp 1–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Quesenberry PJ, Aliotta JM. The paradoxical dynamism of marrow stem cells: considerations of stem cells, niches, and microvesicles. Stem Cell Rev. 2008;4(3):137–47.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Quesenberry PJ, Aliotta J, Deregibus MC, Camussi G. Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Res Ther. 2015;6:153.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–56.CrossRefPubMedGoogle Scholar
  17. 17.
    Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006;20(9):1487–95.CrossRefPubMedGoogle Scholar
  18. 18.
    Ratajczak J, Kucia M, Mierzejewska K, Marlicz W, Pietrzkowski Z, Wojakowski W, Greco NJ, Tendera M, Ratajczak MZ. Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells – implications for stem cell therapies in regenerative medicine. Stem Cells Dev. 2013;22(3):422–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Ratajczak MZ, Adamiak M. Membrane lipid rafts, master regulators of hematopoietic stem cell retention in bone marrow and their trafficking. Leukemia. 2015;29(7):1452–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Ratajczak MZ, Kucia M, Jadczyk T, Greco NJ, Wojakowski W, Tendera M, Ratajczak J. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia. 2012;26(6):1166–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Ratajczak MZ, Jadczyk T, Pędziwiatr D, Wojakowski W. New advances in stem cell research: practical implications for regenerative medicine. Pol Arch Med Wewn. 2014;124(7–8):417–26.PubMedGoogle Scholar
  22. 22.
    Smythies J. Intercellular signaling in cancer-the SMT and TOFT hypotheses, exosomes, telocytes and metastases: is the messenger in the message? J Cancer. 2015;6(7):604–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Smythies J, Edelstein L. Telocytes, exosomes, gap junctions and the cytoskeleton: the makings of a primitive nervous system? Front Cell Neurosci. 2014;7:278.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wysoczynski M, Ratajczak MZ. Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer. 2009;125(7):1595–603.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Mariusz Z. Ratajczak
    • 1
  • Daniel Ratajczak
    • 1
  • Daniel Pedziwiatr
    • 1
  1. 1.Stem Cell Institute at James Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleUSA

Personalised recommendations