Telocytes pp 397-402

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 913) | Cite as

Juxtacerebral Tissue Regeneration Potential: Telocytes Contribution

  • Laura Cristina Ceafalan
  • Bogdan Ovidiu Popescu
Chapter

Abstract

It is well proved already that neurogenesis does take place in mammals’ brain, including human brain. However, neurogenesis by itself is not able to compensate for brain tissue loss in serious neurological diseases, such as stroke, brain trauma or neurodegenerative disorders. Recent evidences show that neural stem cell niches are present not only in classical locations, such as subventricularor subgranular zones, but in other areas as well, including tissues contiguous to the brain (meninges and choroid plexus).In this chapter we revise the relationship of neural stem cells with interstitial cells (mainly telocytes), which we think is significant, and we describe what is known about the juxtacerebral tissue neurogenesis potential.

References

  1. 1.
    Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962;135:1127–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Lajtha LG, Schofield R. Regulation of stem cell renewal and differentiation: possible significance in aging. Adv Gerontol Res. 1971;3:131–46.PubMedGoogle Scholar
  3. 3.
    Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A. Brain size and limits to adult neurogenesis. J Comp Neurol. 2016;524:646–64.CrossRefPubMedGoogle Scholar
  4. 4.
    Belmadani A, Ren D, Bhattacharyya BJ, Rothwangl KB, Hope TJ, Perlman H, Miller RJ. Identification of a sustained neurogenic zone at the dorsal surface of the adult mouse hippocampus and its regulation by the chemokine SDF-1. Hippocampus. 2015;25:1224–41.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yu TS, Washington PM, Kernie SG. Injury-induced neurogenesis: mechanisms and relevance. Neuroscientist. 2016;22:61–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Kernie SG, Parent JM. Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol Dis. 2010;37:267–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang L, Chopp M, Gregg SR, Zhang RL, Teng H, Jiang A, Feng Y, Zhang ZG. Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF. J Cereb Blood Flow Metab. 2008;28:1361–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Muresanu DF, Popa-Wagner A, Stan A, Buga AM, Popescu BO. The vascular component of Alzheimer’s disease. Curr Neurovasc Res. 2014;11:168–76.CrossRefPubMedGoogle Scholar
  9. 9.
    Winner B, Winkler J. Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2015;7:a021287.CrossRefPubMedGoogle Scholar
  10. 10.
    Hugnot JP, Franzen R. The spinal cord ependymal region: a stem cell niche in the caudal central nervous system. Front Biosci (Landmark Ed). 2011;16:1044–59.CrossRefGoogle Scholar
  11. 11.
    Enciu AM, Nicolescu MI, Manole CG, Mureşanu DF, Popescu LM, Popescu BO. Neuroregeneration in neurodegenerative disorders. BMC Neurol. 2011;11:75.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Brocardo PS, Patten A, Gil-Mohapel J. Altered adult neurogenesis in neurodegenerative diseases. Int J Med Biol Front. 2012;18:469–520.Google Scholar
  13. 13.
    Haidet-Phillips AM, Maragakis NJ. Neural and glial progenitor transplantation as a neuroprotective strategy for Amyotrophic Lateral Sclerosis (ALS). Brain Res. 2015;1628(Pt B):343–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci. 2002;22:629–34.PubMedGoogle Scholar
  15. 15.
    Mothe AJ, Tator CH. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience. 2005;131:177–87.CrossRefPubMedGoogle Scholar
  16. 16.
    Lin R, Iacovitti L. Classic and novel stem cell niches in brain homeostasis and repair. Brain Res. 2015;1628(Pt B):327–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Sun W, Sun C, Zhao H, Lin H, Han Q, Wang J, Ma H, Chen B, Xiao Z, Dai J. Improvement of sciatic nerve regeneration using laminin-binding human NGF-beta. PLoS One. 2009;4:e6180.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ma DK, Kim WR, Ming G, Song H. Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann N Y Acad Sci. 2009;1170:664–73.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Decimo I, Fumagalli G, Berton V, Krampera M, Bifari F. Meninges: from protective membrane to stem cell niche. Am J Stem Cells. 2012;1:92–105.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Nakagomi T, Molnár Z, Nakano-Doi A, Taguchi A, Saino O, Kubo S, Clausen M, Yoshikawa H, Nakagomi N, Matsuyama T. Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction. Stem Cells Dev. 2011;20:2037–51.CrossRefPubMedGoogle Scholar
  21. 21.
    Falcão AM, Marques F, Novais A, Sousa N, Palha JA, Sousa JC. The path from the choroid plexus to the subventricular zone: go with the flow! Front Cell Neurosci. 2012;6:34.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Decimo I, Bifari F, Rodriguez FJ, Malpeli G, Dolci S, Lavarini V, Pretto S, Vasquez S, Sciancalepore M, Montalbano A, Berton V, Krampera M, Fumagalli G. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells. 2011;29:2062–76.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Popescu BO, Gherghiceanu M, Kostin S, Ceafalan L, Popescu LM. Telocytes in meninges and choroid plexus. Neurosci Lett. 2012;516:265–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol. 2015;44:115–25.CrossRefPubMedGoogle Scholar
  25. 25.
    Bifari F1, Decimo I, Chiamulera C, Bersan E, Malpeli G, Johansson J, Lisi V, Bonetti B, Fumagalli G, Pizzolo G, Krampera M. Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche. J Cell Mol Med. 2009;13(9B):3195–208.Google Scholar
  26. 26.
    Hinescu ME, Gherghiceanu M, Suciu L, Popescu LM. Telocytes in pleura: two- and three-dimensional imaging by transmission electron microscopy. Cell Tissue Res. 2011;343:389–97.CrossRefPubMedGoogle Scholar
  27. 27.
    Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011;345:391–403.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Popescu LM, Manole E, Serboiu CS, Manole CG, Suciu LC, Gherghiceanu M, Popescu BO. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med. 2011;15:1379–92.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Suciu LC, Popescu BO, Kostin S, Popescu LM. Platelet-derived growth factor receptor-β-positive telocytes in skeletal muscle interstitium. J Cell Mol Med. 2012;16:701–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Laura Cristina Ceafalan
    • 1
    • 2
  • Bogdan Ovidiu Popescu
    • 3
    • 2
  1. 1.Department of Cellular and Molecular Biology and Histology‘Carol Davila’ University of Medicine and PharmacyBucharestRomania
  2. 2.Department of Molecular Medicine and Neuroscience‘Victor Babeș’ National Institute of PathologyBucharestRomania
  3. 3.Department of Neurology, Colentina Clinical Hospital‘Carol Davila’ University of Medicine and PharmacyBucharestRomania

Personalised recommendations