Telocytes pp 287-302 | Cite as

Electrophysiological Features of Telocytes

  • Daniel Dumitru Banciu
  • Adela Banciu
  • Beatrice Mihaela Radu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 913)


Telocytes (TCs) are interstitial cells described in multiple structures, including the gastrointestinal tract, respiratory tract, urinary tract, uterus, and heart. Several studies have indicated the possibility that TCs are involved in the pacemaker potential in these organs. It is supposed that TCs are interacting with the neighboring muscular cells and their network contributes to the initiation and propagation of the electrical potentials. In order to understand the contribution of TCs to various excitability mechanisms, it is necessary to analyze the plasma membrane proteins (e.g., ion channels) functionally expressed in these cells. So far, potassium, calcium, and chloride currents, but not sodium currents, have been described in TCs in primary cell culture from different tissues. Moreover, TCs have been described as sensors for mechanical stimuli (e.g., contraction, extension, etc.). In conclusion, TCs might play an essential role in gastrointestinal peristalsis, in respiration, in pregnant uterus contraction, or in miction, but further highlighting studies are necessary to understand the molecular mechanisms and the cell-cell interactions by which TCs contribute to the tissue excitability and pacemaker potentials initiation/propagation.


Telocytes Interstitial cells of Cajal In vitro electrophysiology Patch clamp Potassium currents Calcium currents Chloride currents Pacemaker potential 



We are grateful for the financial support received through the program Partnerships in priority areas – PN II, UEFISCDI, Project No. 82/2012. B M Radu has a PhD fellowship from the Italian Ministry of Research (MIUR). DD Banciu is financed by the Sectoral Operational Programme Human Resources Development (SOPHRD), the European Social Fund, and the Romanian Government under the contract number POSDRU/159/1.5/S/141531.


  1. 1.
    Ceafalan L, Gherghiceanu M, Popescu LM, Simionescu O. Telocytes in human skin – are they involved in skin regeneration? J Cell Mol Med. 2012;16(7):1405–20.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gevaert T, De Vos R, Van Der Aa F, Joniau S, van den Oord J, Roskams T, De Ridder D. Identification of telocytes in the upper lamina propria of the human urinary tract. J Cell Mol Med. 2012;16(9):2085–93.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Koh BH, Roy R, Hollywood MA, Thornbury KD, McHale NG, Sergeant GP, Hatton WJ, Ward SM, Sanders KM, Koh SD. Platelet-derived growth factor receptor-α cells in mouse urinary bladder: a new class of interstitial cells. J Cell Mol Med. 2012;16(4):691–700.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rusu MC, Nicolescu MI, Jianu AM, Lighezan R, Mănoiu VS, Păduraru D. Esophageal telocytes and hybrid morphologies. Cell Biol Int. 2012;36(12):1079–88.CrossRefPubMedGoogle Scholar
  5. 5.
    Rusu MC, Jianu AM, Mirancea N, Didilescu AC, Mănoiu VS, Păduraru D. Tracheal telocytes. J Cell Mol Med. 2012;16(2):401–5.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Suciu LC, Popescu BO, Kostin S, Popescu LM. Platelet-derived growth factor receptor-β-positive telocytes in skeletal muscle interstitium. J Cell Mol Med. 2012;16(4):701–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Qi G, Lin M, Xu M, Manole CG, Wang X, Zhu T. Telocytes in the human kidney cortex. J Cell Mol Med. 2012;16(12):3116–22.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Corradi LS, Jesus MM, Fochi RA, Vilamaior PS, Justulin Jr LA, Góes RM, Felisbino SL, Taboga SR. Structural and ultrastructural evidence for telocytes in prostate stroma. J Cell Mol Med. 2013;17(3):398–406.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145(4):357–70.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Díaz-Flores L, Gutiérrez R, Sáez FJ, Díaz-Flores Jr L, Madrid JF. Telocytes in neuromuscular spindles. J Cell Mol Med. 2013;17(4):457–65.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Luesma MJ, Gherghiceanu M, Popescu LM. Telocytes and stem cells in limbus and uvea of mouse eye. J Cell Mol Med. 2013;17(8):1016–24.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Matyja A, Gil K, Pasternak A, Sztefko K, Gajda M, Tomaszewski KA, Matyja M, Walocha JA, Kulig J, Thor P. Telocytes: new insight into the pathogenesis of gallstone disease. J Cell Mol Med. 2013;17(6):734–42.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini MS. Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med. 2013;17(9):1099–108.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xiao J, Wang F, Liu Z, Yang C. Telocytes in liver: electron microscopic and immunofluorescent evidence. J Cell Mol Med. 2013;17(12):1537–42.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhao B, Chen S, Liu J, Yuan Z, Qi X, Qin J, Zheng X, Shen X, Yu Y, Qnin TJ, Chan JY, Cai D. Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat. J Cell Mol Med. 2013;17(1):123–33.CrossRefPubMedGoogle Scholar
  16. 16.
    Li L, Lin M, Li L, Wang R, Zhang C, Qi G, Xu M, Rong R, Zhu T. Renal telocytes contribute to the repair of ischemically injured renal tubules. J Cell Mol Med. 2014;18(6):1144–56.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Niculite CM, Regalia TM, Gherghiceanu M, Huica R, Surcel M, Ursaciuc C, Leabu M, Popescu LM. Dynamics of telopodes (telocyte prolongations) in cell culture depends on extracellular matrix protein. Mol Cell Biochem. 2015;398(1–2):157–64.CrossRefPubMedGoogle Scholar
  18. 18.
    Roatesi I, Radu BM, Cretoiu D, Cretoiu SM. Uterine telocytes: a review of current knowledge. Biol Reprod. 2015;93(1):10.CrossRefPubMedGoogle Scholar
  19. 19.
    Wright GW, Parsons SP, Loera-Valencia R, Wang XY, Barajas-López C, Huizinga JD. Cholinergic signalling-regulated KV7.5 currents are expressed in colonic ICC-IM but not ICC-MP. Pflugers Arch. 2014;466(9):1805–18.CrossRefPubMedGoogle Scholar
  20. 20.
    Lang RJ, Tonta MA, Takano H, Hashitani H. Voltage-operated Ca2+ currents and Ca2+ -activated Cl- currents in single interstitial cells of the guinea pig prostate. BJU Int. 2014;114(3):436–46.PubMedGoogle Scholar
  21. 21.
    Sheng J, Shim W, Lu J, Lim SY, Ong BH, Lim TS, Liew R, Chua YL, Wong P. Electrophysiology of human cardiac atrial and ventricular telocytes. J Cell Mol Med. 2014;18(2):355–62.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Duquette RA, Shmygol A, Vaillant C, Mobasheri A, Pope M, Burdyga T, Wray S. Vimentin-positive, c-kit-negative interstitial cells in human and rat uterus: a role in pacemaking? Biol Reprod. 2005;72(2):276–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Rosenbaum ST, Svalø J, Nielsen K, Larsen T, Jørgensen JC, Bouchelouche P. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium. J Cell Mol Med. 2012;16(12):3001–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shahi PK, Choi S, Zuo DC, Kim MY, Park CG, Kim YD, Lee J, Park KJ, So I, Jun JY. The possible roles of hyperpolarization-activated cyclic nucleotide channels in regulating pacemaker activity in colonic interstitial cells of Cajal. J Gastroenterol. 2013;49(6):1001–10.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Si X, Huang L, Gong Y, Lu J, Lin L. Role of calcium in activation of hyperpolarization-activated cyclic nucleotide-gated channels caused by cholecystokinin octapeptide in interstitial cells of cajal. Digestion. 2012;85(4):266–75.CrossRefPubMedGoogle Scholar
  26. 26.
    McCloskey KD. Calcium currents in interstitial cells from the guinea-pig bladder. BJU Int. 2006;97(6):1338–43.CrossRefPubMedGoogle Scholar
  27. 27.
    Cretoiu SM, Radu BM, Banciu A, Banciu DD, Cretoiu D, Ceafalan LC, Popescu LM. Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels. Histochem Cell Biol. 2015;143(1):83–94.CrossRefPubMedGoogle Scholar
  28. 28.
    Campeanu RA, Radu BM, Cretoiu SM, Banciu DD, Banciu A, Cretoiu D, Popescu LM. Near-infrared low-level laser stimulation of telocytes from human myometrium. Lasers Med Sci. 2014;29(6):1867–74.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Parsons SP, Kunze WA, Huizinga JD. Maxi-channels recorded in situ from ICC and pericytes associated with the mouse myenteric plexus. Am J Physiol Cell Physiol. 2012;302:C1055–69.CrossRefPubMedGoogle Scholar
  30. 30.
    Lerche C, Scherer CR, Seebohm G, Derst C, Wei AD, Busch AE, Steinmeyer K. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J Biol Chem. 2000;275:22395–400.CrossRefPubMedGoogle Scholar
  31. 31.
    Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ. KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem. 2000;275:24089–95.CrossRefPubMedGoogle Scholar
  32. 32.
    Bal M, Zhang J, Zaika O, Hernandez CC, Shapiro MS. Homomeric and heteromeric assembly of KCNQ(Kv7) K+ channels assayed by total internal reflection fluorescence/fluorescence resonance energy transfer and patch clamp analysis. J Biol Chem. 2008;283:30668–76.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hinescu ME, Popescu LM. Interstitial Cajal-like cells (ICLC) in human atrial myocardium. J Cell Mol Med. 2005;9(4):972–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Hinescu ME, Gherghiceanu M, Mandache E, Ciontea SM, Popescu LM. Interstitial Cajal-like cells (ICLC) in atrial myocardium: ultrastructural and immunohistochemical characterization. J Cell Mol Med. 2006;10(1):243–57.CrossRefPubMedGoogle Scholar
  35. 35.
    Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell. 2000;102:89–97.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang Z, Xu Y, Song H, Rodriguez J, Tuteja D, Namkung Y, Shin HS, Chiamvimonvat N. Functional roles of Ca(v)1.3 (alpha(1D)) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ Res. 2002;90:981–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A. 2003;100:5543–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mesirca P, Torrente AG, Mangoni ME. Functional role of voltage gated Ca(2+) channels in heart automaticity. Front Physiol. 2015;6:19.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Popescu LM, Manole CG, Gherghiceanu M, Ardelean A, Nicolescu MI, Hinescu ME, Kostin S. Telocytes in human epicardium. J Cell Mol Med. 2010;14(8):2085–93.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Leiria LO, Mónica FZ, Carvalho FD, Claudino MA, Franco-Penteado CF, Schenka A, Grant AD, De Nucci G, Antunes E. Functional, morphological and molecular characterization of bladder dysfunction in streptozotocin-induced diabetic mice: evidence of a role for L-type voltage-operated Ca2+ channels. Br J Pharmacol. 2011;163(6):1276–88.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Balkanci ZD, Pehlivanoğlu B, Bayrak S, Karabulut I, Karaismailoğlu S, Erdem A. The effect of hypercholesterolemia on carbachol-induced contractions of the detrusor smooth muscle in rats: increased role of L-type Ca2+ channels. Naunyn Schmiedeberg’s Arch Pharmacol. 2012;385(11):1141–8.CrossRefGoogle Scholar
  42. 42.
    Sun YH, Gao X, Tang YJ, Xu CL, Wang LH. Androgens induce increases in intracellular calcium via a G protein-coupled receptor in LNCaP prostate cancer cells. J Androl. 2006;27(5):671–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Kim YH, Chung S, Lee YH, Kim EC, Ahn DS. Increase of L-type Ca2+ current by protease-activated receptor 2 activation contributes to augmentation of spontaneous uterine contractility in pregnant rats. Biochem Biophys Res Commun. 2012;418(1):167–72.CrossRefPubMedGoogle Scholar
  44. 44.
    Gui P, Chao JT, Wu X, Yang Y, Davis GE, Davis MJ. Coordinated regulation of vascular Ca2+ and K+ channels by integrin signaling. Adv Exp Med Biol. 2010;674:69–79.CrossRefPubMedGoogle Scholar
  45. 45.
    Peers C, Scragg JL, Boyle JP, Fearon IM, Taylor SC, Green KN, Webster NJ, Ramsden M, Pearson HA. A central role for ROS in the functional remodelling of L-type Ca2+ channels by hypoxia. Philos Trans R Soc Lond B Biol Sci. 2005;360(1464):2247–54.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Svenningsen P, Andersen K, Thuesen AD, Shin HS, Vanhoutte PM, Skott O, Jensen BL, Hill C, Hansen PB. T-type Ca channels facilitate NO-formation, vasodilatation and NO-mediated modulation of blood pressure. Pflügers Arch. 2014;466:2205–14.CrossRefPubMedGoogle Scholar
  47. 47.
    Ball CJ, Wilson DP, Turner SP, Saint DA, Beltrame JF. Heterogeneity of L- and T-channels in the vasculature: rationale for the efficacy of combined L- and T-blockade. Hypertension. 2009;53:654–60.CrossRefPubMedGoogle Scholar
  48. 48.
    Thuesen A, Andersen H, Cardel M, Toft A, Walter S, Marcussen Jensen B, Bie P, Hansen P. Differential effect of T-type voltage-gated calcium channel disruption on renal plasma flow and glomerular filtration rate in vivo. Am J Physiol Ren Physiol. 2014;307:F445–52.CrossRefGoogle Scholar
  49. 49.
    Chen CC, Fan YP, Shin HS, Su CK. Basal sympathetic activity generated in neonatal mouse brainstem-spinal cord preparation requires T-type calcium channel subunit 1H. Exp Physiol. 2011;96:486–94.CrossRefPubMedGoogle Scholar
  50. 50.
    Hofmann F, Lacinova L, Klugbauer N. Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol. 1999;139:33–87.PubMedGoogle Scholar
  51. 51.
    Zhong X, Deng J, He P, You N, Wang Q, Song B, Li L. Reverse mode of the sodium/calcium exchanger subtype 3 in interstitial cells of Cajal from rat bladder. Urology. 2013;82(1):254.e7–12.CrossRefGoogle Scholar
  52. 52.
    Zhu Y, Mucci A, Huizinga JD. Inwardly rectifying chloride channel activity in intestinal pacemaker cells. Am J Physiol Gastrointest Liver Physiol. 2005;288(4):G809–21.CrossRefPubMedGoogle Scholar
  53. 53.
    Kim SO, Jeong HS, Jang S, Wu MJ, Park JK, Jiao HY, Jun JY, Park JS. Spontaneous electrical activity of cultured interstitial cells of cajal from mouse urinary bladder. Korean J Physiol Pharmacol. 2013;17(6):531–6.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wu Y, Shi C, Deng J, Zhang X, Song B, Li L. Expression and function of muscarinic subtype receptors in bladder interstitial cells of cajal in rats. Urol J. 2014;11(3):1642–7.PubMedGoogle Scholar
  55. 55.
    Ito-Dufros Y, Funakoshi Y, Uehara A, Oishi K. In vitro development of gut-like tissue demonstrating rhythmic contractions from embryonic mouse intestinal cells. Neurogastroenterol Motil. 2007;19(4):288–300.CrossRefPubMedGoogle Scholar
  56. 56.
    Kim BJ, Kim HW, Lee GS, Choi S, Jun JY, So I, Kim SJ. Poncirus trifoliate fruit modulates pacemaker activity in interstitial cells of Cajal from the murine small intestine. J Ethnopharmacol. 2013;149(3):668–75.CrossRefPubMedGoogle Scholar
  57. 57.
    Kim BJ, Kwon YK, Kim E, So I. Effects of histamine on cultured interstitial cells of cajal in murine small intestine. Korean J Physiol Pharmacol. 2013;17(2):149–56.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Drumm BT, Sergeant GP, Hollywood MA, Thornbury KD, McHale NG, Harvey BJ. The role of cAMP dependent protein kinase in modulating spontaneous intracellular Ca2+ waves in interstitial cells of Cajal from the rabbit urethra. Cell Calcium. 2014;56(3):181–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Drumm BT, Large RJ, Hollywood MA, Thornbury KD, Baker SA, Harvey BJ, McHale NG, Sergeant GP. The role of Ca(2+) influx in spontaneous Ca(2+) wave propagation in interstitial cells of Cajal from the rabbit urethra. J Physiol. 2015;593(15):3333–50.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Popescu LM, Ciontea SM, Cretoiu D, Hinescu ME, Radu E, Ionescu N, Ceausu M, Gherghiceanu M, Braga RI, Vasilescu F, Zagrean L, Ardeleanu C. Novel type of interstitial cell (Cajal-like) in human fallopian tube. J Cell Mol Med. 2005;9(2):479–523.CrossRefPubMedGoogle Scholar
  61. 61.
    Ciontea SM, Radu E, Regalia T, Ceafalan L, Cretoiu D, Gherghiceanu M, Braga RI, Malincenco M, Zagrean L, Hinescu ME, Popescu LM. C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J Cell Mol Med. 2005;9(2):407–20.CrossRefPubMedGoogle Scholar
  62. 62.
    McCloskey KD. Interstitial cells in the urinary bladder—localisation and function. Neurourol Urodyn. 2010;29:82–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Nguyen DT, Dey A, Lang RJ, Ventura S, Exintaris B. Contractility and pacemaker cells in the prostate gland. J Urol. 2011;185:347–51.CrossRefPubMedGoogle Scholar
  64. 64.
    Hashitani H, Suzuki H. Identification of interstitial cells of Cajal in corporal tissues of the guinea-pig penis. Br J Pharmacol. 2004;141:199–204.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Drumm BT, Koh SD, Andersson KE, Ward SM. Calcium signalling in Cajal-like interstitial cells of the lower urinary tract. Nat Rev Urol. 2014;11(10):555–64.PubMedGoogle Scholar
  66. 66.
    Deng J, He P, Zhong X, Wang Q, Li L, Song B. Identification of T‐type calcium channels in the interstitial cells of Cajal in rat bladder. Urology. 2012;80(6):1389.e1–e7.CrossRefGoogle Scholar
  67. 67.
    Allix S, Reyes-Gomez E, Aubin-Houzelstein G, Noël D, Tiret L, Panthier JJ, Bernex F. Uterine contractions depend on KIT-positive interstitial cells in the mouse: genetic and pharmacological evidence. Biol Reprod. 2008;79(3):510–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Thomsen L, Robinson TL, Lee JC, Farraway LA, Hughes MJ, Andrews DW, Huizinga JD. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med. 1998;4:848–51.CrossRefPubMedGoogle Scholar
  69. 69.
    Smith TK, Reed JB, Sanders KM. Interactions of two electrical pacemakers in muscularis of canine proximal colon. Am J Physiol. 1987;252:C290–9.PubMedGoogle Scholar
  70. 70.
    Liu LW, Huizinga JD. Electrical coupling of circular muscle to longitudinal muscle and interstitial cells of Cajal in canine colon. J Physiol. 1993;470:445–61.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Rae MG, Fleming N, McGregor DB, Sanders KM, Keef KD. Control of motility patterns in the human colonic circular muscle layer by pacemaker activity. J Physiol. 1998;510(Pt1):309–20.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Pluja L, Alberti E, Fernandez E, Mikkelsen HB, Thuneberg L, Jiminez M. Evidence supporting presence of two pacemakers in rat colon. Am J Physiol Gastrointest Liver Physiol. 2001;281:G255–66.PubMedGoogle Scholar
  73. 73.
    Yoneda S, Fukui H, Takaki M. Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon. Neurogastroenterol Motil. 2004;16:621–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, Escande D, Charpentier F, Nargeot J, Lory P. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res. 2006;98(11):1422–30.Google Scholar
  75. 75.
    Marger L, Mesirca P, Alig J, Torrente A, Dubel S, Engeland B, Kanani S, Fontanaud P, Striessnig J, Shin HS, Isbrandt D, Ehmke H, Nargeot J, Mangoni ME. Functional roles of Ca(v)1.3, Ca(v)3.1 and HCN channels in automaticity of mouse atrioventricular cells: insights into the atrioventricular pacemaker mechanism. Channels (Austin). 2011;5:251–61.CrossRefGoogle Scholar
  76. 76.
    Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS. Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med. 2009;13(5):866–86.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kostin S, Popescu LM. A distinct type of cell in myocardium: interstitial Cajal-like cells (ICLCs). J Cell Mol Med. 2009;13(2):295–308.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Torrente AG, Zhang R, Zaini A, Giani JF, Kang J, Lamp ST, Philipson KD, Goldhaber JI. Burst pacemaker activity of the sinoatrial node in sodium-calcium exchanger knockout mice. Proc Natl Acad Sci U S A. 2015;112(31):9769–74.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yamamura H, Cole WC, Kita S, Hotta S, Murata H, Suzuki Y, Ohya S, Iwamoto T, Imaizumi Y. Overactive bladder mediated by accelerated Ca2+ influx mode of Na+/Ca2+ exchanger in smooth muscle. Am J Physiol Cell Physiol. 2013;305(3):C299–308.CrossRefPubMedGoogle Scholar
  80. 80.
    Iurlo A, Orsi E, Cattaneo D, Resi V, Bucelli C, Orofino N, Sciumè M, Elena C, Grancini V, Consonni D, Orlandi EM, Cortelezzi A. Effects of first- and second-generation tyrosine kinase inhibitor therapy on glucose and lipid metabolism in chronic myeloid leukemia patients: a real clinical problem? Oncotarget. 2015;6(32):33944–51.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Lam M, Dey A, Lang RJ, Exintaris B. Effects of imatinib mesylate on the spontaneous activity generated by the guinea-pig prostate. BJU Int. 2013;112(4):E398–405.CrossRefPubMedGoogle Scholar
  82. 82.
    Cretoiu SM, Simionescu AA, Caravia L, Curici A, Cretoiu D, Popescu LM. Complex effects of imatinib on spontaneous and oxytocin-induced contractions in human non-pregnant myometrium. Acta Physiol Hung. 2011;98(3):329–38.CrossRefPubMedGoogle Scholar
  83. 83.
    Wu X, Morgan KG, Jones CJ, Tribe RM, Taggart MJ. Myometrial mechanoadaptation during pregnancy: implications for smooth muscle plasticity and remodelling. J Cell Mol Med. 2008;12(4):1360–73.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Jansson T, Powell TL, Illsley NP. Gestational development of water and non-electrolyte permeability of human syncytiotrophoblast plasma membranes. Placenta. 1999;20(2–3):155–60.CrossRefPubMedGoogle Scholar
  85. 85.
    Whiting KP, Restall CJ, Brain PF. Steroid hormone-induced effects on membrane fluidity and their potential roles in non-genomic mechanisms. Life Sci. 2000;67(7):743–57.CrossRefPubMedGoogle Scholar
  86. 86.
    Manole CG, Gherghiceanu M, Simionescu O. Telocyte dynamics in psoriasis. J Cell Mol Med. 2015;19(7):1504–19.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Manole CG, Cismaşiu V, Gherghiceanu M, Popescu LM. Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med. 2011;15(11):2284–96.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Alunno A, Ibba-Manneschi L, Bistoni O, Rosa I, Caterbi S, Gerli R, Manetti M. Telocytes in minor salivary glands of primary Sjögren’s syndrome: association with the extent of inflammation and ectopic lymphoid neogenesis. J Cell Mol Med. 2015;19(7):1689–96.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Bosco C, Díaz E, Gutiérrez R, González J, Parra-Cordero M, Rodrigo R, Barja P. A putative role for telocytes in placental barrier impairment during preeclampsia. Med Hypotheses. 2015;84(1):72–7.CrossRefPubMedGoogle Scholar
  90. 90.
    Manetti M, Rosa I, Messerini L, Ibba-Manneschi L. Telocytes are reduced during fibrotic remodelling of the colonic wall in ulcerative colitis. J Cell Mol Med. 2015;19(1):62–73.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Daniel Dumitru Banciu
    • 1
  • Adela Banciu
    • 1
  • Beatrice Mihaela Radu
    • 1
    • 2
  1. 1.Department of Anatomy, Animal Physiology and Biophysics, Faculty of BiologyUniversity of BucharestBucharestRomania
  2. 2.Department of Neurological and Movement SciencesUniversity of VeronaVeronaItaly

Personalised recommendations