Telocytes pp 229-239

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 913) | Cite as

Cardiac Telocytes in Regeneration of Myocardium After Myocardial Infarction

Chapter

Abstract

Recent research progress has revealed that a novel type of interstitial cells termed cardiac telocytes (CTs) is found in the interstitium of the heart. We demonstrated that CTs are distributed both longitudinally and within the cross network in the myocardium and that the density of CTs in the atrium-atria and base of the myocardium is higher than that in the middle of the myocardium, while the density of CTs in the epicardium is higher than that in the endocardium. In addition, we documented, for the first time, that the network of CTs in the infarct zone of the myocardium is destroyed during myocardial infarction (MI). This fact shows that, in addition to the death of cardiac myocytes, the previously unrecognized death of CTs is an important mechanism that contributes to the structural damage and poor healing and regeneration observed in the infarcted myocardium. Furthermore, we demonstrated, for the first time, that transplantation of CTs in cases of MI decreases the infarct size and improves myocardial function. The mechanisms behind the beneficial effects of CT transplantation are increased angiogenesis at the infarct site and the border zone, decreased fibrosis in the infarct and non-infarct zones, improved pathological reconstruction of the left ventricle, and increased regeneration of CTs in the infarct zone. Our findings reveal that CTs can be specifically identified by the following characteristics: very small cell bodies, extreme prolongation with some dilation, predisposition to cell death under ischemia, and expression of molecular markers such as c-Kit, CD34, vimentin, and PDGFR-β. CTs act as a structural and functional niche microenvironment in the myocardium and play an essential role in maintaining the integrity of the myocardium and in the regeneration of damaged myocardium.

Keywords

Cardiac telocytes Myocardial infarction Regeneration Ischemia 

References

  1. 1.
    Bernstein HS, Srivastava D. Stem cell therapy for cardiac disease. Pediatr Res. 2012;71:491–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Ptaszek LM, Mansour M, Ruskin JN, Chien KR. Towards regenerative therapy for cardiac disease. Lancet. 2012;379:933–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451:937–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell. 2009;16:233–44.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002;106:3009–17.CrossRefPubMedGoogle Scholar
  6. 6.
    Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schachinger V, Dimmeler S, Zeiher AM. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation. 2003;108:2212–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Fernandez-Aviles F, San Roman JA, Garcia-Frade J, Fernandez ME, Penarrubia MJ, de la Fuente L, Gomez-Bueno M, Cantalapiedra A, Fernandez J, Gutierrez O, Sanchez PL, Hernandez C, Sanz R, Garcia-Sancho J, Sanchez A. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res. 2004;95:742–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, Kalantzi M, Herbots L, Sinnaeve P, Dens J, Maertens J, Rademakers F, Dymarkowski S, Gheysens O, Van Cleemput J, Bormans G, Nuyts J, Belmans A, Mortelmans L, Boogaerts M, Van de Werf F. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367:113–21.CrossRefPubMedGoogle Scholar
  11. 11.
    Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Plewka M, Krzeminska-Pakula M, Peruga JZ, Lipiec P, Kurpesa M, Wierzbowska-Drabik K, Korycka-Wolowiec A, Kasprzak JD. The effects of intracoronary delivery of mononuclear bone marrow cells in patients with myocardial infarction: a two year follow-up results. Kardiol Pol. 2011;69:1234–40.PubMedGoogle Scholar
  13. 13.
    Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG, Smith HJ, Taraldsrud E, Grogaard HK, Bjornerheim R, Brekke M, Muller C, Hopp E, Ragnarsson A, Brinchmann JE, Forfang K. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199–209.CrossRefPubMedGoogle Scholar
  14. 14.
    Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94.CrossRefPubMedGoogle Scholar
  15. 15.
    de Silva R, Raval AN, Hadi M, Gildea KM, Bonifacino AC, Yu ZX, Yau YY, Leitman SF, Bacharach SL, Donahue RE, Read EJ, Lederman RJ. Intracoronary infusion of autologous mononuclear cells from bone marrow or granulocyte colony-stimulating factor-mobilized apheresis product may not improve remodelling, contractile function, perfusion, or infarct size in a swine model of large myocardial infarction. Eur Heart J. 2008;29:1772–82.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hashemi SM, Ghods S, Kolodgie FD, Parcham-Azad K, Keane M, Hamamdzic D, Young R, Rippy MK, Virmani R, Litt H, Wilensky RL. A placebo controlled, dose-ranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction. Eur Heart J. 2008;29:251–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008;29:1807–18.CrossRefPubMedGoogle Scholar
  18. 18.
    Herbots L, D’Hooge J, Eroglu E, Thijs D, Ganame J, Claus P, Dubois C, Theunissen K, Bogaert J, Dens J, Kalantzi M, Dymarkowski S, Bijnens B, Belmans A, Boogaerts M, Sutherland G, Van de Werf F, Rademakers F, Janssens S. Improved regional function after autologous bone marrow-derived stem cell transfer in patients with acute myocardial infarction: a randomized, double-blind strain rate imaging study. Eur Heart J. 2009;30:662–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Tendera M, Wojakowski W, Ruzyllo W, Chojnowska L, Kepka C, Tracz W, Musialek P, Piwowarska W, Nessler J, Buszman P, Grajek S, Breborowicz P, Majka M, Ratajczak MZ. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J. 2009;30:1313–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Maki MT, Koskenvuo JW, Ukkonen H, Saraste A, Tuunanen H, Pietila M, Nesterov SV, Aalto V, Airaksinen KE, Parkka JP, Lautamaki R, Kervinen K, Miettinen JA, Makikallio TH, Niemela M, Saily M, Koistinen P, Savolainen ER, Ylitalo K, Huikuri HV, Knuuti J. Cardiac function, perfusion, metabolism, and innervation following autologous stem cell therapy for acute ST-elevation myocardial infarction. A FINCELL-INSIGHT Sub-Study PET MRI Front Physiol. 2012;3:6.PubMedGoogle Scholar
  21. 21.
    Hirsch A, Nijveldt R, van der Vleuten PA, Tijssen JG, van der Giessen WJ, Tio RA, Waltenberger J, ten Berg JM, Doevendans PA, Aengevaeren WR, Zwaginga JJ, Biemond BJ, van Rossum AC, Piek JJ, Zijlstra F. Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur Heart J. 2011;32:1736–47.CrossRefPubMedGoogle Scholar
  22. 22.
    Francis DP, Mielewczik M, Zargaran D, Cole GD. Autologous bone marrow-derived stem cell therapy in heart disease: discrepancies and contradictions. Int J Cardiol. 2013;168:3381–403.CrossRefPubMedGoogle Scholar
  23. 23.
    Nowbar AN, Mielewczik M, Karavassilis M, Dehbi HM, Shun-Shin MJ, Jones S, Howard JP, Cole GD, Francis DP. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ. 2014;348:g2688.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Goss RJ. Hypertrophy versus hyperplasia. Science. 1966;153:1615–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Anderson RH, Smerup M, Sanchez-Quintana D, Loukas M, Lunkenheimer PP. The three-dimensional arrangement of the myocytes in the ventricular walls. Clin Anat. 2009;22:64–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Ausoni S, Sartore S. The cardiovascular unit as a dynamic player in disease and regeneration. Trends Mol Med. 2009;15:543–52.CrossRefPubMedGoogle Scholar
  27. 27.
    Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation. 2004;110:962–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zaglia T, Dedja A, Candiotto C, Cozzi E, Schiaffino S, Ausoni S. Cardiac interstitial cells express GATA4 and control dedifferentiation and cell cycle re-entry of adult cardiomyocytes. J Mol Cell Cardiol. 2009;46:653–62.CrossRefPubMedGoogle Scholar
  30. 30.
    Popescu LM, Faussone-Pellegrini MS. TELOCYTES – a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010;14:729–40.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Popescu LM, Manole CG, Gherghiceanu M, Ardelean A, Nicolescu MI, Hinescu ME, Kostin S. Telocytes in human epicardium. J Cell Mol Med. 2010;14:2085–93.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bani D, Formigli L, Gherghiceanu M, Faussone-Pellegrini MS. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010;14:2531–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kostin S. Myocardial telocytes: a specific new cellular entity. J Cell Mol Med. 2010;14:1917–21.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gherghiceanu M, Manole CG, Popescu LM. Telocytes in endocardium: electron microscope evidence. J Cell Mol Med. 2010;14:2330–4.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gherghiceanu M, Popescu LM. Heterocellular communication in the heart: electron tomography of telocyte-myocyte junctions. J Cell Mol Med. 2011;15:1005–11.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Manole CG, Cismasiu V, Gherghiceanu M, Popescu LM. Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med. 2011;15:2284–96.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gherghiceanu M, Popescu LM. Cardiac telocytes – their junctions and functional implications. Cell Tissue Res. 2012;348:265–79.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cantarero Carmona I, Luesma Bartolome MJ, Junquera Escribano C. Identification of telocytes in the lamina propria of rat duodenum: transmission electron microscopy. J Cell Mol Med. 2011;15:26–30.CrossRefPubMedGoogle Scholar
  39. 39.
    Popescu LM, Ciontea SM, Cretoiu D. Interstitial Cajal-like cells in human uterus and fallopian tube. Ann N Y Acad Sci. 2007;1101:139–65.CrossRefPubMedGoogle Scholar
  40. 40.
    Zheng Y, Li H, Manole CG, Sun A, Ge J, Wang X. Telocytes in trachea and lungs. J Cell Mol Med. 2011;15:2262–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011;345:391–403.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Popescu LM, Manole E, Serboiu CS, Manole CG, Suciu LC, Gherghiceanu M, Popescu BO. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med. 2011;15:1379–92.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscope (TEM) identification. J Cell Mol Med. 2005;9:893–910.CrossRefPubMedGoogle Scholar
  44. 44.
    Suciu L, Popescu LM, Gherghiceanu M, Regalia T, Nicolescu MI, Hinescu ME, Faussone-Pellegrini MS. Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs. 2010;192:325–39.CrossRefPubMedGoogle Scholar
  45. 45.
    Gherghiceanu M, Popescu LM. Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med. 2010;14:871–7.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145:357–70.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhao B, Chen S, Liu J, Yuan Z, Qi X, Qin J, Zheng X, Shen X, Yu Y, Qnin TJ, Chan JY, Cai D. Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat. J Cell Mol Med. 2013;17:123–33.CrossRefPubMedGoogle Scholar
  48. 48.
    Xiao H, Shen X, Zheng X, Li Y, Cai D. c-Kit + Combining with DiI Micro-label to Sort the Cardiac Telocytes. China Biotechnol. 2015;35:46–53.Google Scholar
  49. 49.
    Bei Y, Zhou Q, Fu S, Lv D, Chen P, Chen Y, Wang F, Xiao J. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS One. 2015;10:e0115991.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chang Y, Li C, Lu Z, Li H, Guo Z. Multiple immunophenotypes of cardiac telocytes. Exp Cell Res. 2015;338(2):239–44.CrossRefPubMedGoogle Scholar
  51. 51.
    Liu J, Shen X, Zheng X, Li Z, Wang J, Qi X, Cai D. Distribution of Telocytes in the rat heart. J Clin Rehabilitative Tissue Eng Res. 2011;15:3546–8.Google Scholar
  52. 52.
    Zhao B, Liao Z, Chen S, Yuan Z, Yilin C, Lee KK, Qi X, Shen X, Zheng X, Quinn T, Cai D. Intramyocardial transplantation of cardiac telocytes decreases myocardial infarction and improves post-infarcted cardiac function in rats. J Cell Mol Med. 2014;18:780–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Key Laboratory for Regenerative Medicine, Ministry of EducationJinan UniversityGuangzhouChina

Personalised recommendations