Telocytes pp 193-206 | Cite as

Paracrine Signaling in the Prostatic Stroma: A Novel Role for the Telocytes Revealed in Rodents’ Ventral Prostate

  • Bruno D. A. Sanches
  • Lara S. Corradi
  • Patricia S. L. Vilamaior
  • Sebastião R. Taboga
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 913)


The telocytes have recently been described in the prostate gland. In mature gland, they exist in close association with the acini and their telopodes form networks whose functions remain unclear. In this chapter, our group gives a brief introduction to telocytes and explores the history that led to such a concept and then discusses hypotheses and presents new evidences about the roles exerted by telocytes in the prostate. First is given emphasis on the role that these cells possibly play in paracrine signaling employed in the differentiation of smooth muscle periacinar are then discussed other roles potentially performed by telocytes in the prostate, such as the organizational, where these cells would act in order to delimit stromal microenvironments, thereby assisting the differentiation of the prostatic anatomical components. In addition, the pacemaker function of smooth muscle cells contraction, as evidenced by the presence of caveolae and gap-type junction and, finally, the role of telocytes in prostate remodeling and the possible action as adult progenitor cells. Generally speaking, the chapter reaffirms the existence of telocytes as distinct cells of other stromal cells and the importance of this new cell type for normal metabolism and prostate development.


Ventral prostate Paracrine signaling Prostatic stroma Epithelium-stroma interaction Prostate development 



The São Paulo Research Foundation (FAPESP), grant numbers 2013/15939-0 and 2013/16443-9, and the CNPq Brazilian National Research and Development Council (CNPq), grant number 301596/2011-5.


  1. 1.
    Bani D, Formigli L, Gherghiceanu M, et al. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010;14(10):2531–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bei Y, Zhou Q, Fu S, et al. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS One. 2015;10(2):e0115991.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bosco C, Díaz E, Gutiérrez R, et al. A putative role for telocytes in placental barrier impairment during preeclampsia. Med Hypotheses. 2014;84:72–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Botchkarev VA, Kishimoto J. Molecular control of epithelial–mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc. 2003;8:46–55. doi: 10.1046/j.1523-1747.2003.12171.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Carmona IC, Bartolomé MJL, Escribano CJ. Identification of telocytes in the lamina propria of rat duodenum: transmission electron microscopy. J Cell Mol Med. 2011;15(1):26–30. doi: 10.1111/j.1582-4934.2010.01207.x.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Corradi LS, Jesus MM, Fochi RA, et al. Structural and ultrastructural evidence for telocytes in prostate stroma. J Cell Mol Med. 2013;17:398–406.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Creţoiu SM, Creţoiu D, Marin A, et al. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145(4):357–70.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Creţoiu SM, Creţoiu D, Popescu LM. Human myometrium – the ultrastructural 3D network of telocytes. J Cell Mol Med. 2012;16(11):2844–9. doi: 10.1111/j.1582-4934.2012.01651.x.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cunha GR. The role of androgens in the epithelio-mesenchymal interactions involved in prostatic morphogenesis in embryonic mice. Anat Rec. 1973;1:87–96.CrossRefGoogle Scholar
  10. 10.
    Faussone Pellegrini MS, Cortesini C, Romagnoli P. Ultrastructure of the tunica muscularis of the cardial portion of the human esophagus and stomach, with special reference to the so-called Cajal’s interstitial cells. Arch Ital Anat Embriol. 1977;82:157.PubMedGoogle Scholar
  11. 11.
    Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscope (TEM) identification. J Cell Mol Med. 2005;9(4):893–910.CrossRefPubMedGoogle Scholar
  12. 12.
    Horiguchi K, Komuro T. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst. 2000;80(3):142–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Iino S, Nojyo Y. Immunohistochemical demonstration of c-Kit-negative fibroblast-like cells in murine gastrointestinal musculature. Arch Histol Cytol. 2009;72(2):107–15.CrossRefPubMedGoogle Scholar
  14. 14.
    Keith A. A new theory of the causation of enterostasis. Lancet. 1915;2:371–5.CrossRefGoogle Scholar
  15. 15.
    Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol. 1999;62(4):295–316.CrossRefPubMedGoogle Scholar
  16. 16.
    Komuro T, Zhou DS. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig small intestine. J Auton Nerv Syst. 1996;61(2):169–74.CrossRefPubMedGoogle Scholar
  17. 17.
    Kostin S. Myocardial telocytes: a specific new cellular entity. J Cell Mol Med. 2010;14:1917–21.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Manetti M, Guiducci S, Ruffo M, et al. Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. J Cell Mol Med. 2013;17:482–96.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nicolescu MI, Popescu LM. Telocytes in the interstitium of human exocrine pancreas: ultrastructural evidence. Pancreas. 2012;41(6):949–56. doi: 10.1097/MPA.0b013e31823fbded.CrossRefPubMedGoogle Scholar
  20. 20.
    Nicolescu MI, Bucur A, Dinca O, et al. Telocytes in parotid glands. Ann N Y Acad Sci. 2011;295(3):378–85. doi: 10.1002/ar.21540.Google Scholar
  21. 21.
    Niu Y, Wang J, Shang Z, et al. Increased CK5/CK8-positive intermediate cells with stromal smooth muscle cell atrophy in the mice lacking prostate epithelial androgen receptor. PLoS One. 2011;6(7):e20202. doi: 10.1371/journal.pone.0020202.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Popescu LM, Faussone-Pellegrini M-S. Telocytes – a case of serendipity: the winding from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to Telocytes. J Cell Mol Med. 2010;14(4):729–40.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Popescu L, Hinescu M, Radu E, et al. CD117/c-kit positive interstitial (Cajal-like) cells in human pancreas. J Cell Mol Med. 2005;9:738–9.CrossRefGoogle Scholar
  24. 24.
    Popescu LM, Ciontea SM, Creţoiu D. Interstitial Cajal-like cells in human uterus and fallopian tube. Ann NY Acad Sci. 2007;1101:139–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Prins GS, Birch L. The developmental pattern of androgen receptor expression in rat prostate lobes is altered after neonatal exposure to estrogen. Endocrinology. 1995;136:1303–14.PubMedGoogle Scholar
  26. 26.
    Prins GS, Putz O. Molecular signaling pathways that regulate prostate gland development. Differentiation. 2008;76(6):641–59. doi: 10.1111/j.1432-0436.2008.00277.x.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Qi G, Lin M, Xu M, et al. Telocytes in the human kidney cortex. J Cell Mol Med. 2012;16(12):3116–22. doi: 10.1111/j.1582-4934.2012.01582.x.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ramon y Cajal S. Histologie du Systeme Nerveux de L’Homme et des Vertebres. Volume 2. Paris: A. Maloine; 1911.Google Scholar
  29. 29.
    Ribatti D, Santoiemma M. Epithelial-mesenchymal interactions: a fundamental developmental biology mechanism. Int J Dev Biol. 2014;58:303–6. doi: 10.1387/ijdb.140143dr.CrossRefPubMedGoogle Scholar
  30. 30.
    Rumessen JJ. Identification of interstitial cells of Cajal. Significance for studies of human small intestine and colon. Dan Med Bull. 1994;41(3):275–93.PubMedGoogle Scholar
  31. 31.
    Rusu MC, Pop F, Hostiuc S, et al. Telocytes form networks in normal cardiac tissues. Histol Histopathol. 2012;27:807–16.PubMedGoogle Scholar
  32. 32.
    Sanches BDA, Biancardi MF, Santos FCA, et al. Budding process during the organogenesis of the ventral prostatic lobe in mongolian gerbil. Microsc Res Tech. 2014;77:458–66.CrossRefPubMedGoogle Scholar
  33. 33.
    Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94(3):859–907. doi: 10.1152/physrev.00037.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shafik A, Shafik I, El-Sibai O. Identification of c-kit-positive cells in the human prostate: the interstitial cells of Cajal. Arch Androl. 2005;51(5):345–51.CrossRefPubMedGoogle Scholar
  35. 35.
    Shannon JM, Hyatt BA. Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol. 2004;66:625–45.CrossRefPubMedGoogle Scholar
  36. 36.
    Sidney LE, Branch MJ, Dunphy SE, et al. Concise review: evidence for CD34 as a common. Marker for diverse progenitors. Stem Cells. 2014;32:1380–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Spemann H, Schotté O. ¨Uber xeneplastische Transplantation als Mittel zur Analyse der embryonalen Induction. Naturwissenschaften. 1932;20:463–7.CrossRefGoogle Scholar
  38. 38.
    Streutker CJ, Huizinga JD, Driman DK, et al. Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology. 2007;50:176–89. doi: 10.1111/j.1365-2559.2006.02493.x.CrossRefPubMedGoogle Scholar
  39. 39.
    Thomson AA, Marker PC. Branching morphogenesis in the prostate gland and seminal vesicles. Differentiation. 2006;7:382–92.CrossRefGoogle Scholar
  40. 40.
    Thomson AA, Timms BG, Barton L, et al. The role of smooth muscle in regulating prostatic induction. Development. 2002;129(8):1905–12.PubMedGoogle Scholar
  41. 41.
    Thuneberg L. Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol. 1982;71:1–130.CrossRefPubMedGoogle Scholar
  42. 42.
    Timms BG. Prostate development: a historical perspective. Differentiation. 2008;76:565–77.CrossRefPubMedGoogle Scholar
  43. 43.
    Timms BG, Lee CW, Aumüller G, et al. Instructive induction of prostate growth and differentiation by a defined urogenital sinus mesenchyme. Microsc Res Tech. 1995;30:319–32.CrossRefPubMedGoogle Scholar
  44. 44.
    Timms BG, Hofkamp LE. Prostate development and growth in benign prostatic hyperplasia. Differentiation. 2011;82:173–83.CrossRefPubMedGoogle Scholar
  45. 45.
    Tomlinson DC, Grindley JC, Thomson AA. Regulation of Fgf10 gene expression in the prostate: identification of transforming growth factor-β1 and promoter elements. Endocrinology. 2004;145(4):1988–95.CrossRefPubMedGoogle Scholar
  46. 46.
    Ueda S, Mizuki M, Ikeda H, et al. Critical roles of c-Kit tyrosine residues 567 and 719 in stem cell factor–induced chemotaxis: contribution of src family kinase and PI3-kinase on calcium mobilization and cell migration. Blood. 2002;99(9):3342–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Vanderwinden JM, Rumessen JJ, de Kerchove d’Exaerde Jr A, et al. Kit-negative fibroblast-like cells expressing SK3, a Ca2+ -activated K+ channel, in the gut musculature in health and disease. Cell Tissue Res. 2002;310(3):349–58.CrossRefPubMedGoogle Scholar
  48. 48.
    Wang XY, Albertí E, White EJ, et al. Igf1r/CD34 immature ICC are putative adult progenitor cells, identified ultrastructurally as fibroblast-like ICC in Ws/Ws rat colon. J Cell Mol Med. 2009;13(9):3528–40.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol. 2001;281(3):G602–11.PubMedGoogle Scholar
  50. 50.
    Zheng Y, Bai CE, Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012;6(1):45–9. doi: 10.1586/ers.11.91.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Bruno D. A. Sanches
    • 1
    • 2
  • Lara S. Corradi
    • 3
    • 2
  • Patricia S. L. Vilamaior
    • 3
    • 2
  • Sebastião R. Taboga
    • 1
    • 2
  1. 1.Department of Structural and Functional BiologyState University of Campinas – UNICAMPCampinasBrazil
  2. 2.Laboratory of Microscopy and Microanalysis, Department of BiologyUniv. Estadual Paulista – UNESPSão José do Rio PretoBrazil
  3. 3.Campus de Araguaína – Escola de Medicina Veterinária e ZootecniaFund. Univ. Federal do TocantinsAraguaínaBrazil

Personalised recommendations