Telocytes pp 149-161 | Cite as

Presence of Telocytes in a Non-innervated Organ: The Placenta

  • Cleofina Bosco
  • Eugenia Díaz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 913)


This chapter discusses the relationship between failure in placentation and the subsequent alterations in the normal structure of the placenta. Interstitial Cajal-like cells (ICLC) were observed for the first time in the human placenta in 2007 and later were named telocytes. Strong evidence confirms that in the placental chorionic villi, TC are located strategically between the smooth muscle cells (SMC) of the fetal blood vessel wall and the stromal myofibroblasts. As the placenta is a non-innervated organ and considering the strategic position of telocytes in chorionic villi, it has been postulated that their function would be related to signal transduction mechanisms involved in the regulation of the blood flow in the fetal vessels, as well as in the shortening/lengthening of the chorionic villi providing the necessary rhythmicity to the process of maternal/fetal metabolic exchange. In this context, telocytes represent part of a functional triad: “SMC of fetal blood vessel-telocyte-myofibroblast.” This triad takes part in the regulation of fetal growth and development via transport of nutrients and gases. This chapter also discusses the alterations in the metabolic maternal–fetal exchange, leading to intrauterine growth retardation and preeclampsia. Additionally, the apoptosis undergoing in the preeclamptic hypoxic placenta affects all the chorionic villi cells, including telocytes and myofibroblast, and not only trophoblast, as it has been so far considered. In consequence, we proposed that apoptosis affects the triad structure and alters the placental function, subsequently affecting the normal fetal growth and development.


Myofibroblast Nitrotyrosine residues Placental telocytes Preeclampsia 





Extravillous trophoblast


Interstitial cells of Cajal


Interstitial Cajal-like cells


Intrauterine growth restriction


Nitric oxide




Reactive oxygen species


Smooth muscle cells








Ultra-large vWB multimers


Vascular endothelial growth factor



This chapter was supported by Grant 1090245 Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT). The authors wish to thank Miss Paulina González Díaz for her kind assistance with language editing.

Conflict of Interest

The authors confirm that this article content has no conflict of interest.


  1. 1.
    Faussone-Pellegrini MS, Thuneberg L. Guide to the identification of interstitial cells of Cajal. Microsc Res Tech. 1999;47:248–66.CrossRefPubMedGoogle Scholar
  2. 2.
    Der T, Bercik P, Donnelly G, Jackson T, Berezin I, Collins SM, Huizinga JD. Interstitial cells of cajal and inflammation-induced motor dysfunction in the mouse small intestine. Gastroenterology. 2000;119:1590–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307–43.CrossRefPubMedGoogle Scholar
  4. 4.
    Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscope (TEM) identification. J Cell Mol Med. 2005;9:893–910.CrossRefPubMedGoogle Scholar
  5. 5.
    Popescu LM, Andrei F, Hinescu ME. Snapshots of mammary gland interstitial cells: methylene blue vital staining and c-kit immunopositivity. J Cell Mol Med. 2005;9:476–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Popescu LM, Ciontea SM, Cretoiu D, Hinescu ME, Radu E, Ionescu N, Ceausu M, Gherghiceanu M, Braga RI, Vasilescu F, Zagrean L, Ardeleanu C. Novel type of interstitial cell (Cajal like) in human fallopian tube. J Cell Mol Med. 2005;9:479–523.CrossRefPubMedGoogle Scholar
  7. 7.
    Hinescu ME, Ardeleanu C, Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells in human gallbladder. J Mol Histol. 2007;38:275–84.CrossRefPubMedGoogle Scholar
  8. 8.
    Suciu L, Popescu LM, Gherghiceanu M. Human placenta: de visu demonstration of interstitial Cajal-like cells. J Cell Mol Med. 2007;11:590–07.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Suciu L, Popescu LM, Gherghiceanu M, Regalia T, Nicolescu MI, Hinescu ME, Faussone-Pellegrini MS. Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs. 2010;192:325–39.CrossRefPubMedGoogle Scholar
  10. 10.
    Popescu LM, Faussone-Pellegrini MS. TELOCYTES – a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010;14:729–40.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bosco C, Díaz E, Gutiérrez R, González J, Parra-Cordero M, Rodrigo R, Barja P. A putative role for telocytes in placental barrier impairment during preeclampsia. Med Hypotheses. 2015;84:72–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Graf R, Langer JU, Schonfelder G, Oney T, Hartel- Schenk S, Reutter W, Schmidt HH. The extravascular contractile system in the human placenta. Morphological and immunocytochemical investigations. Anat Embryol (Berl). 1994;190:541–8.CrossRefGoogle Scholar
  13. 13.
    Kohnen G, Kertschanska S, Demir R, Kaufmann P. Placental villous stroma as a model system for myofibroblast differentiation. Histochem Cell Biol. 1996;105:415–29.CrossRefPubMedGoogle Scholar
  14. 14.
    Bosco C, Díaz E, Gutiérrez R, González J, Parra-Cordero M, Rodrigo R, Barja P. Placental hypoxia developed during preeclampsia induces telocytes apoptosis in chorionic villi affecting the maternal-fetus metabolic exchange. Curr Stem Cell Res Ther. 2016;11:420–5.Google Scholar
  15. 15.
    Nicolescu MI, Popescu LM. Telocytes in the interstitium of human exocrine pancreas: ultrastructural evidence. Pancreas. 2012;41:949–56.CrossRefPubMedGoogle Scholar
  16. 16.
    Bosco C, Díaz E, Gutiérrez R, González J, Pérez J. Ganglionar nervous cells and telocytes in the pancreas of Octodon degus. Auton Neurosci Basic Clin. 2013;177:224–30.CrossRefGoogle Scholar
  17. 17.
    Bosco C, Díaz E. Placental hypoxia and foetal development versus alcohol exposure in pregnancy. Alcohol Alcohol. 2012;47:109–17.CrossRefPubMedGoogle Scholar
  18. 18.
    Rosso P. Placental growth, development, and function in relation to maternal nutrition. Fed Proc. 1980;39:250–4.PubMedGoogle Scholar
  19. 19.
    Bosco C. Alcohol and xenobiotics in placenta damage. In: Preedy VR, Watson RR, editors. Comprehensive handbook of alcohol related pathology, vol. 2. London: Elsevier Science Press; 2005. p. 921–35.CrossRefGoogle Scholar
  20. 20.
    Cross CJ. Placental function in development and disease. Reprod Fertil Dev. 2006;18:71–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Bosco C. The cytotrophoblast: the first human amine precursor uptake and decarboxylation (APUD) cell. Med Sci Res. 1995;23:205–7.Google Scholar
  22. 22.
    Pollheimer J, Knöfler M. Signalling pathways regulating the invasive differentiation of human trophoblasts: a review. Placenta. 2005;26:S21–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhou Y, Damsky CH, Chiu K, Roberts JM, Fisher SJ. Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J Clin Invest. 1993;91:950–60.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhou Y, Fisher SJ, Janatpour M, Genbacev O, Dejana E, Wheelock M, Damsky CH. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest. 1997;99:2139–51.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest. 1997;99:2152–64.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Genbacev O, Joslin R, Damsky CH, Polliotti BM, Fisher SJ. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest. 1996;97:540–50.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhou Y, Genbacev O, Damsky CH, Fisher SJ. Oxygen regulates human cytotrophoblast differentiation and invasion: implications for endovascular invasion in normal pregnancy and in pre-eclampsia. J Reprod Immunol. 1998;39:197–213.CrossRefPubMedGoogle Scholar
  28. 28.
    Redman CW, Sargent IL. Placental debris, oxidative stress and pre-eclampsia. Placenta. 2000;21:597–602.CrossRefPubMedGoogle Scholar
  29. 29.
    Redman CWC. Current topic: pre-eclampsia and the placenta. Placenta. 1991;112:301–8.CrossRefGoogle Scholar
  30. 30.
    Myatt L, Kossenjans W, Sahay R, Eis A, Brockman D. Oxidative stress causes vascular dysfunction in the placenta. J Matern Fetal Med. 2000;9:79–82.PubMedGoogle Scholar
  31. 31.
    Allaire AD, Ballenger KA, Wells SR, McMahon MJ, Lessey BA. Placental apoptosis in preeclampsia. Obstet Gynecol. 2000;96:271–6.PubMedGoogle Scholar
  32. 32.
    Bosco C, Parra M, Barja P, Rodrigo R, Fernández V, Suarez M, Muñoz H. Increased immunohistochemical expression of thrombomodulin at placental perivascular myofibroblast in severe preeclampsia (PE). Histol Histopathol. 2005;4:1045–55.Google Scholar
  33. 33.
    Myatt L. Control of vascular resistance in the human placenta. Placenta. 1992;13:329–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol. 2004;122:369–82.CrossRefPubMedGoogle Scholar
  35. 35.
    Roberts JM, Hubel CA. Is oxidative stress the link in the two-stage model of pre-eclampsia? Lancet. 1999;354:788–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Bowen RS, Moodley J, Dutton MF, Theron AJ. Oxidative stress in pre-eclampsia. Acta Obstet Gynecol Scand. 2001;80:719–25.Google Scholar
  37. 37.
    Takagi Y, Nikaido T, Toki T, Kita N, Kanai M, Ashida T, Ohira S, Konishi I. Levels of oxidative stress and redox-related molecules in the placenta in preeclampsia and fetal growth restriction. Virchows Arch. 2004;444:49–55.CrossRefPubMedGoogle Scholar
  38. 38.
    Rodrigo R, Parra M, Bosco C, Fernández V, Barja P, Guajardo J, Messina R. Pathophysiological basis for the prophylaxis of preeclampsia through early supplementation with antioxidant vitamins. Pharmacol Ther. 2005;107:177–97.CrossRefPubMedGoogle Scholar
  39. 39.
    Dotsch J, Hogen N, Nyul Z, Hanze J, Knerr I, Kirschbaum M, Rascher W. Increase of endothelial nitric oxide synthase and endothelin-1 mRNA expression in human placenta during gestation. Eur J Obstet Gynecol Reprod Biol. 2001;97:163–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Myatt L, Rosenfield RB, Eis AL, Brockman DE, Geer I, Lyall F. Nitrotyrosine residues in placenta. Evidence of peroxynitrite formation and action. Hypertension. 1996;28:488–93.CrossRefPubMedGoogle Scholar
  41. 41.
    Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G. Granulation tissue as a contractile organ: a study of structure and function. J Exp Med. 1972;135:719–34.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Iwasaki H, Isayama T, Ichiki T, Kikuchi M. Intermediate filaments of myofibroblasts. Immunochemical and immunocytochemical analyses. Pathol Res Pract. 1987;182:248–54.CrossRefPubMedGoogle Scholar
  43. 43.
    Fuchs E, Cleveland DW. A structural scaffolding of intermediate filaments in health and disease. Science. 1998;279:514–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Desmoulière A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005;13:7–12.CrossRefPubMedGoogle Scholar
  45. 45.
    Castellucci M, Kaufmann P. Evolution of the stroma in human chorionic villi throughout pregnancy. Bibl Anat. 1982;3:40–5.Google Scholar
  46. 46.
    Castellucci M, Kaufmann P. A three-dimensional study of the normal human placental villous core: II. Stromal architecture. Placenta. 1982;3:269–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Feller AC, Schneider H, Schmidt D, Parwaresch MR. Myofibroblast as a major cellular constituent of villous stroma in human placenta. Placenta. 1985;6:405–15.CrossRefPubMedGoogle Scholar
  48. 48.
    Graf R, Schonfelder G, Muhlberger M, Gutsmann M. The perivascular contractile sheath of human placental stem villi: its isolation and characterization. Placenta. 1995;16:57–66.CrossRefPubMedGoogle Scholar
  49. 49.
    Farley AE, Graham CH, Smith GN. Contractile properties of human placental anchoring villi. Am J Physiol Regul Integr Comp Physiol. 2004;287:680–5.CrossRefGoogle Scholar
  50. 50.
    Fryer BH, Simon MC. Hypoxia, HIF and the placenta. Cell Cycle. 2006;5:495–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Di Federico E, Genbacev O, Fisher SJ. Preeclampsia is associated with widespread apoptosis of placental cytotrophoblasts within the uterine wall. Am J Pathol. 1999;155:293–301.CrossRefGoogle Scholar
  52. 52.
    Many A, Hubel CA, Fisher SJ, Roberts JM, Zhou Y. Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am J Pathol. 2000;156:321–31.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Khalil RA, Granger JP. Vascular mechanisms of increased arterial pressure in preeclampsia: lessons from animal models. Am J Physiol Regul Integr Comp Physiol. 2002;283:R29–45.CrossRefPubMedGoogle Scholar
  54. 54.
    Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME. Telocytes and putative stem cells in lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011;345:391–403.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zheng Y, Li H, Manole CG, Sun A, Ge J, Wang X. Telocytes in trachea and lungs. J Cell Mol Med. 2011;15:2262–8.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini MS. Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med. 2013;17:1099–2108.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Milia AF, Ruffo M, Manetti M, Rosa I, Conte D, Fazi M, Messerini L, Ibba-Manneschi L. Telocytes in Crohn’s disease. J Cell Mol Med. 2013;17:1525–36.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kanfer A, Bruch JF, Nguyen G, He CJ, Delarue F, Flahault A, Nessmann C, Uzan S. Increased placental antifibrinolytic potential and fibrin deposits in pregnancy-induced hypertension and preeclampsia. Lab Invest. 1996;74:253–8.PubMedGoogle Scholar
  59. 59.
    Labarrere CA, Faulk WP. Microvascular perturbations in human allografts: analogies in preeclamptic placentae. Am J Reprod Immunol. 1992;27:109–16.CrossRefPubMedGoogle Scholar
  60. 60.
    Labarrere CA, Faulk WP. Fetal stem vessel endothelial changes in placentae from normal and abnormal pregnancies. Am J Reprod Immunol. 1992;27:97–100.CrossRefPubMedGoogle Scholar
  61. 61.
    Dittman WA, Majerus PW. Structure and function of thrombomodulin: a natural anticoagulant. Blood. 1990;75:329–36.PubMedGoogle Scholar
  62. 62.
    Kroll J, Waltenberger J. VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem Biophys Res Commun. 1998;252:743–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Webster RP, Roberts VH, Myatt L. Protein nitration in placenta functional significance. Placenta. 2008;29:985–94.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Parra-Cordero M, Bosco C, González J, Gutiérrez R, Barja P, Rodrigo R. Immunohistochemical expression of von Willebrand factor in the preeclamptic placenta. J Mol Histol. 2011;42:459–65.CrossRefPubMedGoogle Scholar
  65. 65.
    Bosco C, González J, Gutiérrez R, Parra-Cordero M, Barja P, Rodrigo R. Oxidative damage to preeclamptic placenta: immunohistochemical expression of VEGF, nitrotyrosine residues and von Willebrand factor. J Matern Fetal Neonatal Med. 2012;25:2339–45.CrossRefPubMedGoogle Scholar
  66. 66.
    Kostin S. Myocardial telocytes: a specific new cellular entity. J Cell Mol Med. 2010;14:1917–21.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Dong J, Moake J, Nolasco L, Bernardo A, Arceneaux W, Shrimpton CN, Schade AJ, McIntire LV, Fujikawa K, López JA. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood. 2002;100:4033–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Li Y, Choi H, Zhou Z, Nolasco L, Pownall HJ, Voorberg J, Moake JL, Dong JF. Covalent regulation of ULVWF string formation and elongation on endothelial cells under flow conditions. J Thromb Haemost. 2008;6:1135–43.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    López JA, Dong JF. Shear stress and the role of high molecular weight von Willebrand factor multimers in thrombus formation. Blood Coagul Fibrinolysis. 2005;16:S11–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Furlan M. Proteolytic cleavage of von Willebrand factor by ADAMTS-13 prevents uninvited clumping of blood platelets. J Thromb Haemost. 2004;2:1505–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Lancellotti S, De Filippis V, Pozzi N, Peyvandi F, Palla R, Rocca B, Rutella S, Pitocco D, Mannucci PM, De Cristofaro R. Formation of methionine sulfoxide by peroxynitrite at position 1606 of von Willebrand factor inhibits its cleavage by ADAMTS-13: a new prothrombotic mechanism in diseases associated with oxidative stress. Free Radic Biol Med. 2010;48:446–56.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Laboratorio de Placenta y Desarrollo Fetal, Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiago 7Chile
  2. 2.Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile

Personalised recommendations