Advertisement

A Closed-Form Solution for a Linear Viscoelastic Self-gravitating Sphere

  • Wolfgang H. Müller
  • Elena N. Vilchevskaya
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 60)

Abstract

Following up on the classical solutions by Love for a linear-elastic self-gravitating sphere, this paper presents the corresponding extension to a linear viscoelastic body of the Kelvin–Voigt type. The solution is expressed in closed form by making use of Laplace transforms. Applications to the genesis of terrestrial planets are sought and the evolution of the Love radius and possible extensions to large deformations are discussed. As a new result, it turns out that in the early days of planet formation there is no Love radius and that it takes time for the Love radius to develop.

Keywords

Viscoelastic Model Terrestrial Planet Planet Formation Laplace Space Discrete Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bose, S.C., Chattarji, P.P.: A note on the finite deformation in the interior of the Earth. Bull. Calcutta Math. Soc. 55(1), 11–18 (1963)Google Scholar
  2. Campbell, D.L.: The loading problem for a linear viscoelastic Earth: I. Compressible, non-gravitating models. Pageoph 112, 997–1010 (1974)CrossRefGoogle Scholar
  3. Chattarji, P.P.: Finite deformation in the interior of the Earth. Bull. Calcutta Math. Soc. 45, 113–118 (1953)MathSciNetGoogle Scholar
  4. Frelova, X.: A viscoelastic model of the state of deformation of the eye. Master thesis, St Petersburg Polytechnical State University supervised by E N Vilchevskaya (2016)Google Scholar
  5. Gad-el Hak, M., Bandyopadhyay, P.R.: Questions in fluid mechanics. J. Fluids Eng. 117, 3–5 (1995)CrossRefGoogle Scholar
  6. Kenyon, B.B.C.S.J.: Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. Astron. J. 131(3), 1837–1850 (2006)MathSciNetCrossRefGoogle Scholar
  7. Kienzler, R., Schröder, R.: Einführung in die Höhere Festigkeitslehre. Springer, Dordrecht (2009)CrossRefGoogle Scholar
  8. Lakes, R.S.: Viscoelastic Materials. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  9. Lissauer, J.J.: Planet formation. Annu. Rev. Astron. Astrophys. 31, 129–174 (1993)CrossRefGoogle Scholar
  10. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, vol. 1. Cambridge University Press, Cambridge (1892)zbMATHGoogle Scholar
  11. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, Second edn. Cambridge University Press, Cambridge (1906)zbMATHGoogle Scholar
  12. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, Fourth edn. Cambridge University Press, Cambridge (1927)zbMATHGoogle Scholar
  13. Müller, I.: Thermodynamik—Grundlagen der Materialtheorie. Bertelsmann-Universitäts verlag, Düsseldorf (1973)Google Scholar
  14. Müller, I., Müller, W.H.: Fundamentals of Thermodynamics and Applications: With Historical Annotations and Many Citations from Avogadro to Zermelo. Springer Science and Business Media, Heidelberg (2009)zbMATHGoogle Scholar
  15. Müller, W.H., Weiss, W.: The State of Deformation in Earthlike Self-Gravitating Objects. Springer, Singapore (2016)CrossRefGoogle Scholar
  16. Ragazzo, C., Ruiz, L.S.: Dynamics of an isolated, viscoelastic, self-gravitating body. Celest. Mech. Dyn. Astron. 122, 303–332 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 4th edn. McGraw-Hill Book Company, Inc., New York (1956)zbMATHGoogle Scholar
  18. Tanaka, Y., Klemann, V., Fleming, K., Martinec, Z.: Spectral finite element approach to postseismic deformation in a viscoelastic self-gravitating spherical Earth. Geophys. J. Int. 176(3), 715–739 (2009)CrossRefGoogle Scholar
  19. Timoshenko, S., Goodier, J.N.: Theory of Elasticity, 4th edn. McGraw-Hill Book Company, Inc., New York (1951)zbMATHGoogle Scholar
  20. Truesdell, C., Toupin, R.: Handbook of Physics: The Classical Field Theories. Springer, Berlin (1960)Google Scholar
  21. Wang, C.C., Truesdell, C.: Introduction to Rational Elasticity, vol. 1. Springer Science and Business Media, Heidelberg (1973)zbMATHGoogle Scholar
  22. Wetherill, G.W.: Formation of the Earth. Annu. Rev. Earth Planet. Sci. 18, 205–256 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Chair of Continuum Mechanics and Materials Theory, Institute of MechanicsTechnical University of BerlinBerlinGermany
  2. 2.Institute for Problems in Mechanical Engineering of the Russian Academy of SciencesSt.-PetersburgRussia
  3. 3.Peter the Great Saint-Petersburg Polytechnic UniversitySt.-PetersburgRussia

Personalised recommendations