Skip to main content

Exploration of Plant Growth-Promoting Actinomycetes for Biofortification of Mineral Nutrients

  • Chapter
  • First Online:

Abstract

Mineral malnutrition, especially Fe and Zn, affects more than two million people around the world and increases vulnerability to illness and infections. These malnourished people live in developing countries and rely upon staple foods routinely with inability to either afford for dietary diversification or pharmaceutical supplementation or industrial fortification of minerals. Biofortification is a strategy that can tackle hidden hunger merely through staple foods that people eat every day. This strategy can be achieved through agronomic practices and conventional breeding and genetic engineering approaches, and each has their own pros and cons. The sustainability of such grain fortification with higher seed mineral concentration is soil health dependent, especially on the availability of mineral in the rhizosphere. Microorganisms, the invisible engineers in improving the soil health by solubilizing trace elements and by driving various biogeochemical cycles of soil, have the ability to serve as a key solution for this complex issue. In specific, plant growth-promoting (PGP) microbes reside in root-soil interface and employ the use of siderophores, organic acids, and exopolysaccharides for increasing the mineral availability and subsequent mobilization to the plants. Increasing the seed mineral density with the use of such PGP microbes, especially actinomycetes, is in its infancy. Hence, this chapter is aimed to bring a view on the role of microbes, especially actinomycetes, with metal-mobilizing and PGP traits for biofortification as this strategy may act as a complementary sustainable tool for the existing biofortification strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abhishek W, Preeti M, Anjali C, Shirkot CK (2013) Antagonistic activity of plant growth-promoting rhizobacteria isolated from tomato rhizosphere against soil borne fungal plant pathogens. Int J Agric Environ Biotechnol 6:571–580

    Article  Google Scholar 

  • Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 24:253–262

    Article  CAS  Google Scholar 

  • Agrawal DPK, Agrawal S (2013) Characterization of Bacillus sp. strains isolated from rhizosphere of tomato plants (Lycopersicon esculentum) for their use as potential plant growth-promoting rhizobacteria. Int J Curr Microbiol Appl Sci 2:406–417

    Google Scholar 

  • Ahmed EA, Hassan EA, El Tobgy KMK, Ramadan EM (2014) Evaluation of rhizobacteria of some medicinal plants for plant growth-promotion and biological control. Ann Agric Sci 59:273–280

    Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    Article  CAS  PubMed  Google Scholar 

  • Arcand JL (2001) Undernourishment and economic growth: the efficiency cost of hunger, Economic and social development paper no. 147. Food and Agriculture Organization, Rome

    Google Scholar 

  • Barriuso J, Ramos Solano B, Santamaría C, Daza A, Gutierrez Manero FJ (2008) Effect of inoculation with putative plant growth‐promoting rhizobacteria isolated from Pinus spp. on Pinus pinea growth, mycorrhization and rhizosphere microbial communities. J Appl Microbiol 105:1298–1309

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bloem J, de Ruiter P, Bouwman LA (1997) Soil food webs and nutrient cycling in agro-ecosystems. In: van Elsas JD, Trevors JT, Wellington HME (eds) Modern soil microbiology. Marcel Dekker, New York, pp 245–278

    Google Scholar 

  • Cakmak I, Kalayci M, Ekiz H, Braun HJ, Kilinc Y, Yilmaz A (1999) Zinc deficiency as a practical problem in plant and human nutrition in Turkey: a NATO-science for stability project. Field Crop Res 60:175–188

    Article  Google Scholar 

  • Carvalho SMP, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int 54:961–971

    Article  CAS  Google Scholar 

  • de Souza R, Beneduzi A, Ambrosini A, da Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LMP (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603

    Article  Google Scholar 

  • Dimkpa CO, Svatos A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Donate-Correa J, León-Barrios M, Pérez-Galdona R (2005) Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266:261–272

    Article  Google Scholar 

  • Egamberdieva D, Shrivastava S, Varma A (2015) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Cham

    Book  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth-promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  • Erdal I, Yilmaz A, Taban S, Eker S, Torun B, Cakmak I (2002) Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. J Plant Nutr 25:113–127

    Article  CAS  Google Scholar 

  • Fan MS, Zhao FJ, Fairweather-Tait SJ, Poulton PR, Dunham SJ, McGrath SP (2008) Evidence of decreasing mineral density in wheat grain over the last 160 years. J Trace Elem Med Biol 22:315–324

    Article  CAS  PubMed  Google Scholar 

  • FAO, WFP, IFAD (2012) The state of food insecurity in the world 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO, WFP, IFAD (2013) The state of food insecurity in the world 2013. The multiple dimensions of food security. Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO, WFP, IFAD (2014) The state of food insecurity in the world 2014. Strengthening the enabling environment for food security and nutrition. Food and Agriculture Organization, Rome

    Google Scholar 

  • Garvin DF, Welch RM, Finley JW (2006) Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agric 86:2213–2220

    Article  CAS  Google Scholar 

  • Giridhar Babu A, Shim J, Bang K, Shea PJ, Oh B (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manage 132:129–134

    Article  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Apparla S, Bandikinda P, Vijayabharathi R, Bhimineni RK, Rupela O (2013) Evaluation of Streptomyces spp. for their plant growth-promotion traits in rice. Can J Microbiol 59:534–539

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Rupela O, Kudapa H, Katta K, Varshney RK (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48

    Article  CAS  PubMed  Google Scholar 

  • Graham RD (2008) Micronutrient deficiencies in crops and their global significance. In: Alloway BJ (ed) Micronutrient deficiencies in global crop production. Springer, Heidelberg, pp 41–61

    Chapter  Google Scholar 

  • Graham RD, Welch RM, Saunders DA, Bouis HE, Bonierbale M, de Haan S, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadian M, Hobbs PR, Gupta RJK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  • Graham RD, Knez M, Welch RM (2012) How much nutritional iron deficiency in humans globally is due to an underlying zinc deficiency? Adv Agron 115:1–40

    Article  CAS  Google Scholar 

  • Gupta AP (2005) Micronutrient status and fertilizer use scenario in India. J Trace Elem Med Biol 18:325–331

    Article  CAS  PubMed  Google Scholar 

  • Haden RL (1938) Historical aspect of iron therapy in anemia. J Am Med Assoc 111:1059–1061

    Article  Google Scholar 

  • HarvestPlus (2013) Diving into delivery. 2013 Annual report. Last accessed at http://www.harvestplus.org/sites/default/files/HarvestPlus%202013%20Annual%20Report.pdf on 31 Oct 2015

  • He LY, Zhang YF, Ma HY, Su LN, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Characterization of copper resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55

    Article  Google Scholar 

  • Hoorman JJ, Islam R (2010) Understanding soil microbes and nutrient recycling. Fact Sheet SAG-16-10, The Ohio State University, USA

    Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889

    Article  CAS  PubMed  Google Scholar 

  • Kalayci M, Torun B, Eker S, Aydin M, Ozturk M, Cakmak I (1999) Grain yield, zinc efficiency and zinc concentration of wheat cultivars grown in a zinc-deficient calcareous soil in field and greenhouse. Field Crop Res 63:87–98

    Article  Google Scholar 

  • Kataki PK (2002) Shifts in cropping system and its effect on human nutrition: case study from India. J Crop Prod 6:119–144

    Article  Google Scholar 

  • Kavamura VN, Santos SN, da Silva JL, Parma MM, Ávila LA, Visconti A, Zucchi TD, Taketani RG, Andreote FD, de Melo IS (2013) Screening of Brazilian cacti rhizobacteria for plant growth-promotion under drought. Microbiol Res 168:183–191

    Article  CAS  PubMed  Google Scholar 

  • Kennedy G, Natel G, Shetty P (2003) The scourge of ‘hidden hunger’: global dimensions of micronutrient deficiencies. Food Nutr Agric 32:8–16

    Google Scholar 

  • Khalid S, Asghar HN, Akhtar MJ, Aslam A, Zahir ZA (2015) Biofortification of iron in chickpea by plant growth-promoting rhizobacteria. Pak J Bot 47:1191–1194

    Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kumar K, Singh N, Behlh HM, Srivastava S (2008) Influence of plant growth-promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Hou J, Wang Q, Ding L, Luo Y (2014) Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil. Chemosphere 117:303–308

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth-promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth-promotion. Front Microbiol 6:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Medeot DB, Paulucci NS, Albornoz AI, Fumero MV, Bueno MA, Garcia MB, Woelke MR, Okon Y, Dardanelli MS (2010) Plant growth-promoting rhizobacteria improving the legume–rhizobia symbiosis. In: Khan MS, Musarrat J, Zaidi A (eds) Microbes for legume improvement. Springer, Vienna, pp 473–494

    Chapter  Google Scholar 

  • Mehta P, Walia A, Chauhan A, Shirkot CK (2013) Plant growth-promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh. Arch Microbiol 195:357–369

    Article  CAS  PubMed  Google Scholar 

  • Nascimento FX, Rossi MJ, Soares CRFS, McConkey BJ, Glick BR (2014) New insights into 1-aminocyclopropane-1-carboxylate (acc) deaminase phylogeny, evolution and ecological significance. PLoS One 9(6):e99168

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439

    Article  CAS  Google Scholar 

  • Pimentel D, Pimentel M (2003) Sustainability of meat-based and plant-based diets and the environment. Am J Clin Nutr 78:660S–663S

    CAS  PubMed  Google Scholar 

  • Pingali PL, Roger PA (2012) Impact of pesticides on farmer health and the rice environment. Springer, Dordrecht

    Google Scholar 

  • Prasad SA (1991) Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr 53:403–412

    CAS  PubMed  Google Scholar 

  • Prasad SA (2003) Zinc deficiency. Br Med J 326:409–410

    Article  Google Scholar 

  • Prasad SA, Schulert AR, Miale A, Farid Z, Sandstead HH (1963) Zinc and iron deficiencies in male subjects with dwarfism and hypogonadism but without ancylostomiasis, schistosomiasis or severe anemia. Am J Clin Nutr 12:437–444

    CAS  PubMed  Google Scholar 

  • Prasanna R, Bidyarani N, Babu S, Hossain F, Shivay YS, Nain L (2015) Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agric 1:998507

    Article  Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant growth-promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ma Y, Freitas H (2008) Characterization of metal-resistant plant growth-promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J Basic Microbiol 48:1–9

    Article  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012a) Biofortification of wheat through inoculation of plant growth-promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rana A, Saharan B, Nain L, Prasanna R, Shivay YS (2012b) Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci Plant Nutr 58:573–582

    Article  CAS  Google Scholar 

  • Rana A, Kabi SR, Verma S, Adak A, Pal M, Shivay YS, Nain L (2015) Prospecting plant growth-promoting bacteria and cyanobacteria as options for enrichment of macro-and micronutrients in grains in rice–wheat cropping sequence. Cogent Food Agric 1(1):1037379

    Article  Google Scholar 

  • Ren Q, Fan F, Zhang Z, Zheng X, DeLong GR (2008) An environmental approach to correcting iodine deficiency: supplementing iodine in soil by iodination of irrigation water in remote areas. J Trace Elem Med Biol 22:1–8

    Article  CAS  PubMed  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl Soil Ecol 28:139–146

    Article  Google Scholar 

  • Schütze E, Klose M, Merten D, Nietzsche S, Senftleben D, Roth M, Kothe E (2014) Growth of streptomycetes in soil and their impact on bioremediation. J Hazard Mater 267:128–135

    Article  PubMed  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahzad Z, Rouached H, Rakha A (2014) Combating mineral malnutrition through iron and zinc biofortification of cereals. Compr Rev Food Sci Food Saf 13:329–346

    Article  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2013) Enhancing grain iron content of rice by the application of plant growth-promoting rhizobacteria. Plant Soil Environ 59:89–94

    CAS  Google Scholar 

  • Silini-Chérif H, Silini A, Ghoul M, Yadav S (2012) Isolation and characterization of plant growth-promoting traits of a rhizobacteria: Pantoea agglomerans lma2. Pak J Biol Sci 15:267–276

    Article  PubMed  Google Scholar 

  • Singh MV (2009) Micronutrient nutritional problems in soils of India and improvement for human and animal health. Indian J Fertil 5:11–16

    CAS  Google Scholar 

  • Singh SK, Pancholy A, Jindal SK, Pathak R (2011) Effect of plant growth-promoting rhizobia on seed germination and seedling traits in Acacia senegal. Ann For Res 54:161–169

    Google Scholar 

  • Sirohi G, Upadhyay A, Srivastava PS, Srivastava S (2015) PGPR mediated zinc biofertilization of soil and its impact on growth and productivity of wheat. J Soil Sci Plant Nutr 15:202–216

    Google Scholar 

  • Stein AJ (2009) Global impacts of human mineral malnutrition. In: Brar MS, Mukhopadhyay SS (eds) Proceedings of the IPI-OUAT-IPNI international symposium 2009. IPI, Horgen, Switzerland and IPNI, Norcross, USA, pp 45─82

    Google Scholar 

  • Thokchom E, Kalita MC, Talukdar NC (2014) Isolation, screening, characterization and selection of superior rhizobacterial strains as bioinoculants for seedling emergence and growth-promotion of Mandarin orange (Citrus reticulata Blanco). Can J Microbiol 60:85–92

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Pandey A (2008) Plant growth-promotion abilities and formulation of Bacillus megaterium strain B 388 (MTCC6521) isolated from a temperate Himalayan location. Indian J Microbiol 48:342–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth-promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. J Basic Microbiol 47:513–517

    Article  CAS  PubMed  Google Scholar 

  • Uren NC (2007) Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface. CRC Press, Boca Raton, pp 1–22

    Chapter  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth-promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Article  Google Scholar 

  • von Grebmer K, Saltzman A, Birol E, Wiesmann D, Prasai N, Yin S, Yohannes Y, Menon P, Thompson J, Sonntag A (2014) 2014 Global Hunger Index: the challenge of hidden hunger. Welthungerhilfe, International Food Policy Research Institute, and Concern Worldwide, Bonn/Washington, DC/Dublin

    Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrob 3:34–40

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    Article  CAS  PubMed  Google Scholar 

  • Welch RM (2001) Micronutrients, agriculture and nutrition; linkages for improved health and wellbeing. In: Singh K, Mori S, Welch RM (eds) Perspectives on the micronutrient nutrition of crops. Scientific Publishers, Jodhpur, pp 247–289

    Google Scholar 

  • Welch RM (2002a) The impact of mineral nutrients in food crops on global human health. Plant Soil 247:83–90

    Article  CAS  Google Scholar 

  • Welch RM (2002b) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr 132:S495–S499

    Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • WHO (2002) The world health report 2002. World Health Organization, Geneva. Last accessed at http://www.who.int/whr/2002/ on 31 Oct 2015

    Google Scholar 

  • WHO (2004) Vitamin and mineral requirements in human nutrition. World Health Organization, Geneva. Last accessed at http://www.who.int/iris/bitstream/10665/42716/ http://apps.who.int//iris/bitstream/10665/42716/1/9241546123.pdf on 31 Oct 2015

    Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2009) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  Google Scholar 

  • Zahid M, Abbasi K, Hameed S, Rahim N (2015) Isolation and identification of indigenous plant growth-promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol 6:207

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gopalakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sathya, A., Vijayabharathi, R., Gopalakrishnan, S. (2016). Exploration of Plant Growth-Promoting Actinomycetes for Biofortification of Mineral Nutrients. In: Subramaniam, G., Arumugam, S., Rajendran, V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_17

Download citation

Publish with us

Policies and ethics