Advertisement

Use of Genomic Approaches in Understanding the Role of Actinomycetes as PGP in Grain Legumes

Chapter

Abstract

The advancement in molecular technologies has given a breakthrough to explore the untapped and novel microbial isolates for characterization in every aspect as we can consider microbes as an important primary natural store house for key secondary metabolites and enzymes. Actinomycetes are the most fruitful source of microorganisms for all types of bioactive secondary metabolites, including agroactive-antibiotic molecules that are best recognized and most valuable for their role in agriculture and industries. In agriculture, actinomycetes are used as biocontrol agents against some pests and pathogenic organisms as well as plant growth-promoting (PGP) agents for crops. Use of different molecular methods, e.g., metagenomics, metatranscriptomics, genetic fingerprinting, proteogenomics, and metaproteomics, are more significant for classifying and discovering the immense diversity in microbial population and for understanding their interactions with other abiotic and biotic environmental elements. The opportunity of accessing inexpensive sequencing techniques has led to the assemblies of copious genomic data for actinomycetes, such as Streptomyces and related species, with the goal of discovering novel bioactive metabolic and their utility as PGP; however, the use of actinomycetes in agriculture using genomic approaches is in its initial stages.

Keywords

Actinomycetes Plant growth-promotion Grain legumes Whole genome sequence Molecular technologies 

References

  1. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth-promoting rhizobacteria: current perspective. J King Saude Univ Sci 26:1–20CrossRefGoogle Scholar
  2. Akeroyd M, Olsthoorn M, Gerritsma J (2013) Searching for microbial protein over-expression in a complex matrix using automated high throughput MS-based proteomics tools. J Biotechnol 164:112–120CrossRefPubMedGoogle Scholar
  3. Alexander M (1977) Introduction to soil microbiology. Krieger Publishing Company, Malabar, p 467Google Scholar
  4. Arigoni F, Kaminski PA, Hennecke H, Elmerich C (1991) Nucleotide sequence of the fixABC region of Azorhizobium caulinodans ORS571: similarity of the fixB product with eukaryotic flavoproteins, characterization of fixX, and identification of nifW. Mol Gen Genet 225:514–520CrossRefPubMedGoogle Scholar
  5. Baranasic D, Gacesa R, Starcevic A, Zucko J, Blazic M, Horvat M, Gjuračić K, Fujs S, Hranueli D, Kosec G, Cullum J, Petković H (2013) Draft genome sequence of Streptomyces rapamycinicus strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc 1:e00581–13CrossRefPubMedPubMedCentralGoogle Scholar
  6. Benson DR, Arp DJ, Bums RH (1979) Cell-free nitrogenase and hydrogenase from actinorhizal root nodules. Science 205:688–689CrossRefPubMedGoogle Scholar
  7. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycetes Streptomyces coelicolorA3(2). Nature 417:141–147CrossRefPubMedGoogle Scholar
  8. Bjerga GEK, Hjerde H, De Santi C, Williamson AK, Smalås AO, Willassen NP, Altermark B (2014) High quality draft genome sequence of Streptomyces sp. strain AW19M42 isolated from a sea squirt in Northern Norway. St Genome Sci 9:676–686CrossRefGoogle Scholar
  9. Chang C, Sustarich J, Bharadwaj R, Chandrasekaran A, Adams PD, Singh AK (2013) Droplet-based microfluidic platform for heterogeneous enzymatic assays. Lab Chip 13:1817–1822CrossRefPubMedGoogle Scholar
  10. Chen X, Zhang B, Zhang W, Wu X, Zhang M, Chen T, Zhanga M, Chena T, Liua G, Dysonb P (2013) Genome sequence of Streptomyces violaceusniger strain SPC6, a halotolerant streptomycete that exhibits rapid growth and development. Genome Announc 1:00494–13Google Scholar
  11. Davis JR, Goodwin L, Teshima H, Detter C, Tapia R, Han C, Huntemann M, Wei CL, Han J, Chen A, Kyrpides K, Mavrommatis N, Szeto E, Markowitz V, Ivanova N, Mikhailova N, Ovchinnikova G, Pagani I, Pati A, Woyke T, Pitluck S, Peters L, Nolan ML, Jason K, Sello J (2013) Genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a lignin-degrading actinomycete. Genome Announc 1:e00416–13PubMedPubMedCentralGoogle Scholar
  12. Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834Google Scholar
  13. Dodd A, Swanevelder D, Featherston J, Rumbold K (2013) Draft Genome sequence of Streptomyces albulus strain CCRC 11814, an ε-poly-L-lysine-producing actinomycete. Genome Announc 1:e00696–13CrossRefPubMedPubMedCentralGoogle Scholar
  14. Doroghazi JR, Metcalf WW (2013) Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 14:611CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fischbach MA, Walsh CT, Clardy J (2008) The evolution of gene collectives: how natural selection drives chemical innovation. Proc Natl Acad Sci U S A 105:4601–4608CrossRefPubMedPubMedCentralGoogle Scholar
  16. Flinspach K, Rückert C, Kalinowski J, Heide L, Apel AK (2014) Draft genome sequence of Streptomyces niveus NCIMB 11891, producer of the aminocoumarin antibiotic novobiocin. Genome Announc 2:e01146–13CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fraser CM, Eisen JA, Nelson KE, Paulsen IT, Salzberg SL (2002) The value of complete microbial genome sequencing (you get what you pay for). J Bacteriol 23:6403–6405CrossRefGoogle Scholar
  18. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008a) SymRK defines a common genetic basis for plant root endosymbiosis with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Proc Natl Acad Sci U S A 105:4928–4932CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gherbi H, Nambiar-Veetil M, Zhong C, Félix J, Autran D, Girardin R, Vaissayre V, Auguy F, Bogusz D, Franche C (2008b) Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. Mol Plant Microbe Interact 21:518–524CrossRefPubMedGoogle Scholar
  20. Girard G, Traag BA, Sangal V, Mascini N, Hoskisson PA, Goodfellow M, van Wezel GP (2013) A novel taxonomic marker that discriminates between morphologically complex actinomycetes. Open Biol 10:130073CrossRefGoogle Scholar
  21. Gomez-Escribano JP, Bibb MJ (2014) Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J Ind Microbiol Biotechnol 41:425–431CrossRefPubMedGoogle Scholar
  22. Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078CrossRefGoogle Scholar
  23. Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Rathore A, Varshney RK (2015) The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea. Springerplus 4:31CrossRefPubMedPubMedCentralGoogle Scholar
  24. Grüning BA, Erxleben A, Hähnlein A, Günther S (2013) Draft genome sequence of Streptomyces viridochromogenes strain Tu57, producer of avilamycin. Genome Announc 1:e00384–13CrossRefPubMedPubMedCentralGoogle Scholar
  25. Han X, Li M, Ding Z, Zhao J, Ji K, Wen M, Lu T (2012) Genome sequence of Streptomyces auratus strain AGR0001, a phoslactomycin-producing actinomycete. J Bacteriol 194:5472–5473CrossRefPubMedPubMedCentralGoogle Scholar
  26. Harrison J, Studholme DJ (2014) Recently published Streptomyces genome sequences. Microb Biotechnol 7:373–380CrossRefPubMedPubMedCentralGoogle Scholar
  27. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241PubMedPubMedCentralGoogle Scholar
  28. Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Bogusz D (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signalling cascade. Plant Physiol 156:700–711CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hoefler BC, Konganti K, Straight PDP (2013) De novo assembly of the Streptomyces sp. strain Mg1 genome using PacBio single-molecule sequencing. Genome Announc 1:1–2CrossRefGoogle Scholar
  30. Hu D, Li X, Chang Y, He H, Zhang C, Jia N, Li H, Wang Z (2012) Genome sequence of Streptomyces sp. Strain TOR3209, a rhizosphere microecology regulator isolated from tomato rhizosphere. J Bacteriol 194:1627CrossRefPubMedPubMedCentralGoogle Scholar
  31. Huguet-Tapia JC, Loria R (2012) Draft genome sequence of Streptomyces acidiscabies 84-104, an emergent plant pathogen. J Bacteriol 194:1847CrossRefPubMedPubMedCentralGoogle Scholar
  32. Huguet-Tapia JC, Badger JH, Loria R, Pettis GS (2011) Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens. Plasmid 65:118–124CrossRefPubMedGoogle Scholar
  33. Intra B, Mungsuntisuk I, Nihira T, Igarashi Y, Panbangred W (2011) Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease. BMC Res Notes 4:98CrossRefPubMedPubMedCentralGoogle Scholar
  34. James RD, William WM (2013) Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 14:611CrossRefGoogle Scholar
  35. Kennedy J, Flemer B, Jackson SA (2010) Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8:608–628CrossRefPubMedPubMedCentralGoogle Scholar
  36. Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kodani S, Hudson M, Durrant M, Buttner M, Nodwell J, Willey J (2004) The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci U S A 101:11448–11453CrossRefPubMedPubMedCentralGoogle Scholar
  38. Komaki H, Ichikawa N, Oguchi A, Hamada M, Tamura T, Fujitab N (2015) Draft genome sequence of Streptomyces albus strain NBRC 13014T, the type species of the genus Streptomyces. Genome Announc 3:1e01527–14Google Scholar
  39. Kortemaa H, Rita H, Haahtela K, Smolander A (1994) Root colonization ability of antagonistic Streptomyces griseoviridis. Plant Soil 163:77–83Google Scholar
  40. Kumar S, Kaur N, Singh NK, Raghava GPS, Mayilraja S (2013) Draft genome sequence of Streptomyces gancidicus strain BKS 13–15. Genome Announc 1:2e00150–13Google Scholar
  41. Kumar R, Biswas K, Soalnki V, Kumar P, Tarafdar A (2014a) Actinomycetes: potential bioresource for human welfare: a review. Res J Environ Sci 2:5–16Google Scholar
  42. Kumar R, Biswas K, Tarafdar A, Soalnki V, Kumar P, Shankar P (2014b) Recent advancement in biotechnological and molecular approaches of actinomycetes: a review. Bull Environ Pharmacol Life Sci 3:189–192Google Scholar
  43. Laranjoa M, Alexandrea A, Oliveiraa S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17CrossRefGoogle Scholar
  44. Lin Y, Hao X, Johnstone L, Miller SJ, Baltrus DA, Rensing C, Wei G (2011) Draft genome of Streptomyces zinciresistens K42, a novel metal-resistant species isolated from copper-zinc mine tailings. J Bacteriol 193:6408–6409CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143CrossRefPubMedPubMedCentralGoogle Scholar
  46. Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:e68CrossRefPubMedPubMedCentralGoogle Scholar
  47. Martínez V, Hormigo D, del Cerro C, Gómez de Santos P, García-Hidalgo J, Arroyo M, Prieto A, García JL, de la Mata I (2014) Genome sequence of Streptomyces exfoliatus DSMZ 41693, a source of poly(3-hydroxyalkanoate)-degrading enzymes. Genome Announc 2:e01272–13CrossRefPubMedPubMedCentralGoogle Scholar
  48. Miller JJ, Liljeroth E, Henken G, van Veen JA (1989) Fluctuations in the fluorescent pseudomonad and actinomycetes populations of rhizosphere and rhizoplane during the growth of spring wheat. Can J Microbiol 36:254–258CrossRefGoogle Scholar
  49. Miller JJ, Liljeroth E, Willemsen-de Klein MJEIM, van Veen JA (1990) The dynamics of actinomycetes and fluorescent pseudomonads in wheat rhizoplane and rhizosphere. Symbiosis 9:389–391Google Scholar
  50. Mullin BC, An CS (1990) The molecular genetics of Frankia. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, New York, pp 195–214Google Scholar
  51. Murumkar PR, Gupta SD, Zambre VP, Giridhar R, Yadav MR (2009) Development of predictive 3DQSARCoMFA and CoMSIA models for β-aminohydroxamic acid-derived tumour necrosis factor-α converting enzyme inhibitors. Chem Biol Drug Des 73:97–107CrossRefPubMedGoogle Scholar
  52. Muyzer G (1999) DGGE/TGGE: a method for identifying genes from natural ecosystems. Curr Open Microbiol 2:317–322CrossRefGoogle Scholar
  53. Myers RM, Fischer SG, Lerman LS, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joint to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131–3145CrossRefPubMedPubMedCentralGoogle Scholar
  54. Myronovskyi M, Tokovenko B, Manderscheid N, Petzke L, Luzhetskyy A (2013) Complete genome sequence of Streptomyces fulvissimus. J Biotechnol 168:117–118CrossRefPubMedGoogle Scholar
  55. Normand P, Bousquet J (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J Mol Evol 29:436–447CrossRefPubMedGoogle Scholar
  56. Normand P, Simonet P, Bardin R (1988) Conservation of nif sequences in Frankia. Mol Gen Genet 213:238–246CrossRefPubMedGoogle Scholar
  57. Normand P, Gouy M, Cournoyer B, Simonet P (1992) Nucleotide sequence of nifD from Frankia alni strain ArI3: phylogenetic inferences. Mol Biol Evol 9:495–506PubMedGoogle Scholar
  58. O’Donnell AG, Embley TM, Goodfellow M (1993) Future of bacterial systematics. In: Goodfellow M, O’Donnell AG (eds) Handbook of new bacterial systematics. Academic, London, pp 513–524Google Scholar
  59. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060CrossRefPubMedPubMedCentralGoogle Scholar
  60. Osbourn A (2010) Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 26:449–457CrossRefPubMedGoogle Scholar
  61. Pethick FE, Macfadyen AC, Tang Z, Sangal V, Liu T-T, Chu J, Kosec G, Petkovic H, Guo M, Kirby R, Hoskisson PA, Herron PR, Huntera IS (2013) Draft genome sequence of the oxytetracycline-producing bacterium Streptomyces rimosus ATCC 10970. Genome Announc 1:e00063–13CrossRefPubMedCentralGoogle Scholar
  62. Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Ann Rev Ecol Evol Syst 42:489–512CrossRefGoogle Scholar
  63. Riesner D, Steger G, Zimmat R, Owens RA, Wagenhofer M, Hillen W, Vollbach S, Henco K (1989) Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10:377–389CrossRefPubMedGoogle Scholar
  64. Roshan K, Tarafdar A, Saurav K, Ali S, Lone SA, Pattnaik S, Tyagi A, Biswas K, Mir ZA (2013) Isolation and screening of bioactive compound from actinomycetes isolated from salt pan of Marakanam district of the state Tamil Nadu, India. Elixir Bio Technol 61:16826–16831Google Scholar
  65. Rückert C, Szczepanowski R, Albersmeier A, Goesmann A, Iftime D, Musiol EM, Blin K, Wohlleben W, Pühler A, Kalinowski J, Weber T (2013) Complete genome sequence of the kirromycin producer Streptomyces collinus Tü 365 consisting of a linear chromosome and two linear plasmids. J Biotechnol 168:739–740CrossRefPubMedGoogle Scholar
  66. Rückert C, Kalinowski J, Heide L, Apel AK (2014) Draft genome sequence of Streptomyces roseochromogenes subsp. oscitans DS 12.976, producer of the aminocoumarin antibiotic clorobiocin. Genome Announc 2:e01147–13CrossRefPubMedPubMedCentralGoogle Scholar
  67. Shiva K (2001) Actinomycetes of an Indian mangrove (Pichavaram) environment: an inventory. Ph.D. thesis, Annamalai University, India, p 91Google Scholar
  68. Short JM, Keller M, Lafferty WM (2003) High throughput or capillary-based screening for a bioactivity or biomolecule. US patent application 2003, S20030049841A1Google Scholar
  69. Simonet P, Bardin R, Haurat J, Moiroud A, Normand P (1986) Localization of nif genes on a large plasmid in Frankia sp. strain ULQ0132105009. Mol Gen Genet 204:492–495CrossRefGoogle Scholar
  70. Singh S, Parniske M (2012) Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr Opin Plant Biol 15:444–453CrossRefPubMedGoogle Scholar
  71. Smith C, Li X, Mize T (2013) Sensitive, high throughput detection of proteins in individual, surfactant stabilized picoliter droplets using NanoESI mass spectrometry. Anal Chem 8:2–19Google Scholar
  72. Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci U S A 92:2647–2651CrossRefPubMedPubMedCentralGoogle Scholar
  73. Svistoonoff S, Laplaze L, Auguy F, Runions J, Duponnois R, Haseloff J, Franche C, Bogusz D (2003) Cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. Mol Plant Microbe Interact 16:600–607CrossRefPubMedGoogle Scholar
  74. Takarada H, Sekine M, Kosugi H, Matsuo Y, Fujisawa T, Omata S, Kishi E, Shimizu A, Tsukatani N, Tanikawa S, Fujita N, Harayama S (2008) Complete genome sequence of the soil actinomycete Kocuria rhizophila. J Bacteriol 190:4139–4146CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tanaka Y, Omura S (1993) Agroactive compounds of microbial origin. Annu Rev Microbiol 47:57–87CrossRefPubMedGoogle Scholar
  76. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171CrossRefPubMedPubMedCentralGoogle Scholar
  77. Twigg P, An C, Mullin BC (1990) Nucleotide sequence of nifD, the structural gene coding for a subunit of the Mo-Fe protein of the nitrogenase complex from the actinomycete Frankia. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation achievements and objectives. Chapman and Hall, New York, p 771Google Scholar
  78. Vikram S, Kumar S, Subramanian S, Raghava GPS (2012) Draft genome sequence of the nitrophenol-degrading actinomycete Rhodococcus imtechensis RKJ300. J Bacteriol 194:3543CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wang L, Hou Y, Peng J, Qi X, Zhang Q, Bai F (2012a) Bioactivity-based HPLC tandem Q/TOF for alpha-glucosidase inhibitors: screening, identification and quantification from actinomycetes. Lat Am J Pharm 31:693–698Google Scholar
  80. Wang L, Wang S, He Q, Yu T, Li Q, Hong B (2012b) Draft genome sequence of Streptomyces globisporus C-1027, which produces an antitumor antibiotic consisting of a nine-membered enediyne with a chromoprotein. J Bacteriol 194:4144CrossRefPubMedPubMedCentralGoogle Scholar
  81. Xu L, Huang H, Wei W, Zhong Y, Tang B, Yuan H, Zhu L, Huang W, Ge M, Yang S, Zheng H, Jiang W, Chen D, Zhao GP, Zhao W (2014a) Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis. BMC Genomics 15:363CrossRefPubMedPubMedCentralGoogle Scholar
  82. Xu Z, Xia J, Feng X, Li S, Xu H, Bo F, Sun Z (2014b) Genome sequence of Streptomyces albulus PD-1, a productive strain for epsilon-poly-L-lysine and poly-L diaminopropionic acid. Genome Announc 2:e00297–14PubMedPubMedCentralGoogle Scholar
  83. Yang H, He T, Wu W, Zhu W, Lu B, Sun W (2013) Whole-genome shotgun assembly and analysis of the genome of Streptomyces mobaraensis DSM 40847, a strain for industrial production of microbial transglutaminase. Genome Announc 1:e0014313PubMedGoogle Scholar
  84. Yang H, Zhang Z, Yan R, Wang Y, Zhu D (2014) Draft genome sequence of Streptomyces sp. strain PRh5, a novel endophytic actinomycete isolated from dongxiang wild rice root. Genome Announc 2:e12–e14Google Scholar
  85. Zaburannyi N, Rabyk M, Ostash B, Fedorenko V, Luzhetskyy A (2014) Insights into naturally minimised Streptomyces albus J1074 genome. BMC Genomics 15:97CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153CrossRefPubMedGoogle Scholar
  87. Zhai Y, Cheng B, Hu J, Kyeremeh K, Wang X, Jaspars M, Deng H, Deng Z, Honga K (2015) Draft genome sequence of Streptomyces sp. strain CT34, isolated from a Ghanaian soil sample. Genome Announc 3:e01508–e01514CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhang W, Wang L, Kong L, Wang T, Chu Y, Deng Z, You D (2012) Unveiling the post-PKS redox tailoring steps in biosynthesis of the type II polyketide antitumor antibiotic xantholipin. Chem Biol 19:422–432CrossRefPubMedGoogle Scholar
  89. Zhang H, Zhou W, Zhuang Y, Liang X, Liu T (2013) Draft genome sequence of Streptomyces bottropensis ATCC 25435, a bottromycin-producing actinomycete. Genome Announc 1:e00019–13PubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia

Personalised recommendations