Review of the Role of Modern Computational Technologies in the Detection of Dyslexia

  • Harshani Perera
  • Mohd Fairuz Shiratuddin
  • Kok Wai Wong
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 376)

Abstract

Dyslexia is disability with a neurological origin that causes lack of proficiency in reading and writing despite normal (or above) intelligence and sensory abilities. Modern computational technologies play a significant role in enhancing the conventional dyslexia detection techniques as well as in discovering novel approaches for dyslexia detection. This paper covers the modern technologies that are being used and examines the existing gaps in the dyslexia detection procedures in order to benefit future research.

Keywords

Dyslexia Computational intelligence Electroencephalogram Eye-movements Games Modern computational technologies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zerbin-Rüdin, E.: Kongenitale Wortblindheit oder spezifische Dyslexie (congenital word-blindness). Annals of Dyslexia 17(1), 47–54 (1967)Google Scholar
  2. 2.
    Hultquist, A.M.: What is Dyslexia?: A Book Explaining Dyslexia for Kids and Adults to Use Together. Jessica Kingsley Publishers (2008)Google Scholar
  3. 3.
    dyslexiaSpeld: Consultations / Assessment - Tests for Dyslexia (2014)Google Scholar
  4. 4.
    Jain, K., Manghirmalani, P., Dongardive, J., Abraham, S.: Computational diagnosis of learning disability. International Journal of Recent Trends in Engineering 2(3), 64–66 (2009)Google Scholar
  5. 5.
    Manghirmalani, P., Panthaky, Z., Jain, K.: Learning disability diagnosis and classification - a soft computing approach. In: 2011 World Congress on Information and Communication Technologies (WICT), pp. 479–484 (2011)Google Scholar
  6. 6.
    Palacios, A.M., Sánchez, L., Couso, I.: Diagnosis of dyslexia with low quality data with genetic fuzzy systems. International Journal of Approximate Reasoning 51(8), 993–1009 (2010)CrossRefGoogle Scholar
  7. 7.
    Ekhsan, H.M., Ahmad, S.Z., Halim, S.A., Hamid, J.N., Mansor, N.H.: The implementation of interactive multimedia in early screening of dyslexia. In: 2012 International Conference on Innovation Management and Technology Research (ICIMTR), pp. 566–569 (2012)Google Scholar
  8. 8.
    Bartolome, N.A., Zorrilla, A.M., Zapirain, B.G.: Dyslexia diagnosis in reading stage though the use of games at school. In: 2012 17th International Conference on Computer Games (CGAMES), pp. 12–17 (2012)Google Scholar
  9. 9.
    Gaggi, O., Galiazzo, G., Palazzi, C., Facoetti, A., Franceschini, S.: A serious game for predicting the risk of developmental dyslexia in pre-readers children. In: 2012 21st International Conference on Computer Communications and Networks (ICCCN), pp. 1–5 (2012)Google Scholar
  10. 10.
    Mohamad, S., Mansor, W., Lee, K.Y.: Review of neurological techniques of diagnosing dyslexia in children. In: 2013 IEEE 3rd International Conference on System Engineering and Technology (ICSET), pp. 389–393 (2013)Google Scholar
  11. 11.
    Nitzken, M., Casanova, M.F., Gimel’farb, G., Elnakib, A., Khalifa, F., Switala, A., El-Baz, A.: 3D shape analysis of the brain cortex with application to dyslexia. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 2657–2660 (2011)Google Scholar
  12. 12.
    Elnakib, A., El-Baz, A., Casanova, M.F., Switala, A.E.: Dyslexia diagnostics by centerline-based shape analysis of the corpus callosum. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 261–264 (2010)Google Scholar
  13. 13.
    El-Baz, A., Casanova, M., Gimel’farb, G., Mott, M., Switala, A., Vanbogaert, E., McCracken, R.: Dyslexia diagnostics by 3D texture analysis of cerebral white matter gyrifications. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (2008)Google Scholar
  14. 14.
    Bellocchi, S., Muneaux, M., Bastien-Toniazzo, M., Ducrot, S.: I can read it in your eyes: What eye movements tell us about visuo-attentional processes in developmental dyslexia. Research in Developmental Disabilities 34(1), 452–460 (2013)CrossRefGoogle Scholar
  15. 15.
    De Luca, M., Borrelli, M., Judica, A., Spinelli, D., Zoccolotti, P.: Reading Words and Pseudowords: An Eye Movement Study of Developmental Dyslexia. Brain and Language 80(3), 617–626 (2002)CrossRefGoogle Scholar
  16. 16.
    Macas, M., Lhotska, L., Novak, D.: Hidden Markov models for analysis of eye movements of dyslexic children. In: 2013 18th International Conference on Digital Signal Processing (DSP), pp. 1–5 (2013)Google Scholar
  17. 17.
    Che Wan Fadzal, C.W.N.F., Mansor, W., Lee, K.Y., Mohamad, S., Amirin, S.: Frequency analysis of EEG signal generated from dyslexic children. In: 2012 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE), pp. 202–204 (2012)Google Scholar
  18. 18.
    Soo-Yeon, J., van Najarian, K.: A modified maximum correlation modeling method for fMRI brain mapping; application for detecting dyslexia. In: IEEE International Conference on Bioinformatics and Biomeidcine Workshops, BIBMW 2008, pp. 64–69 (2008)Google Scholar
  19. 19.
    Fletcher, J.M., Lyon, G.R., Fuchs, L.S., Barnes, M.A.: Learning disabilities: From identification to intervention. Guilford Press (2006)Google Scholar
  20. 20.
    Johnston, S.S., McDonnell, A.P., Hawken, L.S.: Enhancing Outcomes in Early Literacy for Young Children with Disabilities: Strategies for Success. Intervention in School and Clinic 43(4), 210–217 (2008)CrossRefGoogle Scholar
  21. 21.
    Sahari, S.H., Johari, A.: Improvising Reading Classes and Classroom Environment for Children with Reading Difficulties and Dyslexia Symptoms. Procedia - Social and Behavioral Sciences 38, 100–107 (2012)CrossRefGoogle Scholar
  22. 22.
    Shalev, L., Mevorach, C., Humphreys, G.W.: Letter position coding in attentional dyslexia. Neuropsychologia 46(8), 2145–2151 (2008)CrossRefGoogle Scholar
  23. 23.
    Démonet, J.-F., Taylor, M.J., Chaix, Y.: Developmental dyslexia. The Lancet 363(9419), 1451–1460 (2004)CrossRefGoogle Scholar
  24. 24.
    Gvion, A., Friedmann, N.: Letter position dysgraphia. Cortex 46(9), 1100–1113 (2010)CrossRefGoogle Scholar
  25. 25.
    Ziegler, J.C., Castel, C., Pech-Georgel, C., George, F., Alario, F.X., Perry, C.: Developmental dyslexia and the dual route model of reading: Simulating individual differences and subtypes. Cognition 107(1), 151–178 (2008)CrossRefGoogle Scholar
  26. 26.
    Jones, M.W., Branigan, H.P., Hatzidaki, A., Obregón, M.: Is the ‘naming’ deficit in dyslexia a misnomer? Cognition 116(1), 56–70 (2010)CrossRefGoogle Scholar
  27. 27.
    Georgiou, G.K., Parrila, R., Cui, Y., Papadopoulos, T.C.: Why is rapid automatized naming related to reading? Journal of Experimental Child Psychology 115(1), 218–225 (2013)CrossRefGoogle Scholar
  28. 28.
    Davis, R.: The gift of dyslexia: why some of the brightest people can’t read and how they can learn. Souvenir Press Ltd. (2010)Google Scholar
  29. 29.
    de Santana, V.F., de Oliveira, R., Almeida, L.D.A., Baranauskas, M.C.C.: Web accessibility and people with dyslexia: a survey on techniques and guidelines. In: Proceedings of the International Cross-Disciplinary Conference on Web Accessibility, p. 35 (2012)Google Scholar
  30. 30.
    Shaywitz, S.E., Shaywitz, B.A.: Dyslexia (Specific Reading Disability). Biological Psychiatry 57(11), 1301–1309 (2005)CrossRefGoogle Scholar
  31. 31.
    Francks, C., MacPhie, I.L., Monaco, A.P.: The genetic basis of dyslexia. The Lancet Neurology 1(8), 483–490 (2002)CrossRefGoogle Scholar
  32. 32.
    Goez, H., Zelnik, N.: Handedness in Patients With Developmental Coordination Disorder. Journal of Child Neurology 23(2), 151–154 (2008)CrossRefGoogle Scholar
  33. 33.
    Satz, P.: Left-handedness and dyslexia: an old myth revisited. Journal of Pediatric Psychology 12(2), 291–298 (1987)CrossRefGoogle Scholar
  34. 34.
    Tonnessen, F.E., Lokken, A., Hoien, T., Lundberg, I.: Dyslexia, left-handedness, and immune disorders. Archives of Neurology 50(4), 411–416 (1993)CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Heim, S., Keil, A.: Large-scale neural correlates of developmental dyslexia. European Child & Adolescent Psychiatry 13(3), 125–140 (2004)CrossRefGoogle Scholar
  37. 37.
    Hudson, R.F., High, L., Al Otaiba, S.: Dyslexia and the brain: What does current research tell us? The Reading Teacher 60(6), 506–515 (2007)Google Scholar
  38. 38.
    Prado, C., Dubois, M., Valdois, S.: The eye movements of dyslexic children during reading and visual search: Impact of the visual attention span. Vision Research 47(19), 2521–2530 (2007)CrossRefGoogle Scholar
  39. 39.
    Novak, D., Kordik, P., Macas, M., Vyhnalek, M., Brzezny, R., Lhotska, L.: School children dyslexia analysis using self organizing maps. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS 2004, pp. 1–4 (2004)Google Scholar
  40. 40.
    Nunez, P.L., Srinivasan, R.: Electric fields of the brain: the neurophysics of EEG. Oxford University Press (2006)Google Scholar
  41. 41.
    Silipo, R., Deco, G., Bartsch, H.: Brain tumor classification based on EEG hidden dynamics. Intelligent Data Analysis 3(4), 287–306 (1999)CrossRefMATHGoogle Scholar
  42. 42.
    Shantha Selva Kumari, R., Prabin Jose, J.: Seizure detection in EEG using time frequency analysis and SVM. In: 2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT), pp. 626–630 (2011)Google Scholar
  43. 43.
    Rippon, G., Brunswick, N.: Trait and state EEG indices of information processing in developmental dyslexia. International Journal of Psychophysiology 36(3), 251–265 (2000)CrossRefGoogle Scholar
  44. 44.
    Arns, M., Peters, S., Breteler, R., Verhoeven, L.: Different brain activation patterns in dyslexic children: Evidence from EEG power and coherence patterns for the double-deficit theory of dyslexia. Journal of Integrative Neuroscience 6(1), 175–190 (2007)CrossRefGoogle Scholar
  45. 45.
    Spironelli, C., Penolazzi, B., Angrilli, A.: Dysfunctional hemispheric asymmetry of theta and beta EEG activity during linguistic tasks in developmental dyslexia. Biological Psychology 77(2), 123–131 (2008)CrossRefGoogle Scholar
  46. 46.
    Fuad, N., Mansor, W., Lee, K.Y.: Wavelet packet analysis of EEG signals from children during writing. In: 2013 IEEE Symposium on Computers & Informatics (ISCI), pp. 228–230 (2013)Google Scholar
  47. 47.
    Eun-Hye, J., Byoung-Jun, P., Sang-Hyeob, K., Youngji, E., Jin-Hun, S.: A study on analysis of bio-signals for basic emotions classification: recognition using machine learning algorithms. In: 2014 International Conference on Information Science and Applications (ICISA), pp. 1–4 (2014)Google Scholar
  48. 48.
    Frid, A., Breznitz, Z.: An SVM based algorithm for analysis and discrimination of dyslexic readers from regular readers using ERPs. In: 2012 IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI), pp. 1-4 (2012)Google Scholar
  49. 49.
    Karim, I., Abdul, W., Kamaruddin, N.: Classification of dyslexic and normal children during resting condition using KDE and MLP. In: 2013 5th International Conference on Information and Communication Technology for the Muslim World (ICT4M), pp. 1–5 (2013)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Harshani Perera
    • 1
  • Mohd Fairuz Shiratuddin
    • 1
  • Kok Wai Wong
    • 1
  1. 1.School of Engineering and Information TechnologyMurdoch UniversityMurdochAustralia

Personalised recommendations