Advertisement

Controlled Drug Delivery Systems

  • Hamid Reza Rezaie
  • Mohammadhossein Esnaashary
  • Abolfazl Aref arjmand
  • Andreas Öchsner
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Drug concentration must be placed between two thresholds, referred as the minimum effective concentration and the maximum toxic concentration, to be effective and nontoxic. Usually, a drug is released in three manners.

References

  1. 1.
    Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663.  https://doi.org/10.1021/acs.chemrev.5b00346CrossRefGoogle Scholar
  2. 2.
    Jain GK, Pathan SA, Akhter S, Ahmad N, Jain N, Talegaonkar S, Khar RK, Ahmad FJ (2010) Mechanistic study of hydrolytic erosion and drug release behaviour of PLGA nanoparticles: influence of chitosan. Polym Degrad Stab 95:2360–2366.  https://doi.org/10.1016/j.polymdegradstab.2010.08.015CrossRefGoogle Scholar
  3. 3.
    Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery☆. Adv Drug Deliv Rev 58:1655–1670.  https://doi.org/10.1016/j.addr.2006.09.020CrossRefGoogle Scholar
  4. 4.
    Zhou L, Yuan J, Yuan W, Sui X, Wu S, Li Z, Shen D (2009) Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles. J Magn Magn Mater 321:2799–2804.  https://doi.org/10.1016/j.jmmm.2009.04.020CrossRefGoogle Scholar
  5. 5.
    Determan MD, Cox JP, Mallapragada SK (2007) Drug release from pH-responsive thermogelling pentablock copolymers. J Biomed Mater Res Part A 81A:326–333.  https://doi.org/10.1002/jbm.a.30991CrossRefGoogle Scholar
  6. 6.
    Tang X, Pan C (2008) Double hydrophilic block copolymers PEO- b -PGA: synthesis, application as potential drug carrier and drug release via pH-sensitive linkage. J Biomed Mater Res Part A 86A:428–438.  https://doi.org/10.1002/jbm.a.31515CrossRefGoogle Scholar
  7. 7.
    Niu Y, Stadler FJ, Song J, Chen S, Chen S (2017) Facile fabrication of polyurethane microcapsules carriers for tracing cellular internalization and intracellular pH-triggered drug release. Colloids Surf B Biointerfaces 153:160–167.  https://doi.org/10.1016/j.colsurfb.2017.02.018CrossRefGoogle Scholar
  8. 8.
    Su X, Wang J, Zhang J, Yuwen L, Zhang Q, Dang M, Tao J, Ma X, Wang S, Teng Z (2017) Synthesis of sandwich-like molybdenum sulfide/mesoporous organosilica nanosheets for photo-thermal conversion and stimuli-responsive drug release. J Colloid Interface Sci 496:261–266.  https://doi.org/10.1016/j.jcis.2017.01.068CrossRefGoogle Scholar
  9. 9.
    Jiang K, Zhang L, Hu Q, Zhang Q, Lin W, Cui Y, Yang Y, Qian G (2017) Thermal stimuli-triggered drug release from a biocompatible porous metal-organic framework. Chem A Eur J 23:10215–10221.  https://doi.org/10.1002/chem.201701904CrossRefGoogle Scholar
  10. 10.
    Dabbagh A, Abdullah BJJ, Abu Kasim NH, Abdullah H, Hamdi M (2015) A new mechanism of thermal sensitivity for rapid drug release and low systemic toxicity in hyperthermia and thermal ablation temperature ranges. Int J Hyperth 31:375–385.  https://doi.org/10.3109/02656736.2015.1006268CrossRefGoogle Scholar
  11. 11.
    Dabbagh A, Mahmoodian R, Abdullah BJJ, Abdullah H, Hamdi M, Abu Kasim NH (2015) Low-melting-point polymeric nanoshells for thermal-triggered drug release under hyperthermia condition. Int J Hyperth 31:920–929.  https://doi.org/10.3109/02656736.2015.1094147CrossRefGoogle Scholar
  12. 12.
    Spohr R, Reber N, Wolf A, Alder GM, Ang V, Bashford CL, Pasternak CA, Omichi Hideki, Yoshida M (1998) Thermal control of drug release by a responsive ion track membrane observed by radio tracer flow dialysis. J Control Release 50:1–11.  https://doi.org/10.1016/S0168-3659(97)00076-XCrossRefGoogle Scholar
  13. 13.
    Shi C, Thum C, Zhang Q, Tu W, Pelaz B, Parak WJ, Zhang Y, Schneider M (2016) Inhibition of the cancer-associated TASK 3 channels by magnetically induced thermal release of Tetrandrine from a polymeric drug carrier. J Control Release 237:50–60.  https://doi.org/10.1016/j.jconrel.2016.06.044CrossRefGoogle Scholar
  14. 14.
    Xiao C, Ding J, Ma L, Yang C, Zhuang X, Chen X (2015) Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polym Chem 6:738–747.  https://doi.org/10.1039/C4PY01156BCrossRefGoogle Scholar
  15. 15.
    Gupta MK, Meyer TA, Nelson CE, Duvall CL (2012) Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. J Control Release 162:591–598.  https://doi.org/10.1016/j.jconrel.2012.07.042CrossRefGoogle Scholar
  16. 16.
    Shi J, Chen Z, Wang B, Wang L, Lu T, Zhang Z (2015) Reactive oxygen species-manipulated drug release from a smart envelope-type mesoporous titanium nanovehicle for tumor sonodynamic-chemotherapy. ACS Appl Mater Interfaces 7:28554–28565.  https://doi.org/10.1021/acsami.5b09937CrossRefGoogle Scholar
  17. 17.
    Medina SH, Chevliakov MV, Tiruchinapally G, Durmaz YY, Kuruvilla SP, ElSayed MEH (2013) Enzyme-activated nanoconjugates for tunable release of doxorubicin in hepatic cancer cells. Biomaterials 34:4655–4666.  https://doi.org/10.1016/j.biomaterials.2013.02.070CrossRefGoogle Scholar
  18. 18.
    Pan G, Liu S, Zhao X, Zhao J, Fan C, Cui W (2015) Full-course inhibition of biodegradation-induced inflammation in fibrous scaffold by loading enzyme-sensitive prodrug. Biomaterials 53:202–210.  https://doi.org/10.1016/j.biomaterials.2015.02.078CrossRefGoogle Scholar
  19. 19.
    Chu D, Curdy C, Riebesehl B, Zhang Y, Beck-Broichsitter M, Kissel T (2013) Enzyme-responsive surface erosion of poly(ethylene carbonate) for controlled drug release. Eur J Pharm Biopharm 85:1232–1237.  https://doi.org/10.1016/j.ejpb.2013.04.011CrossRefGoogle Scholar
  20. 20.
    Polat BE, Hart D, Langer R, Blankschtein D (2011) Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 152:330–348.  https://doi.org/10.1016/j.jconrel.2011.01.006CrossRefGoogle Scholar
  21. 21.
    Schoellhammer CM, Blankschtein D, Langer R (2014) Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv 11:393–407.  https://doi.org/10.1517/17425247.2014.875528CrossRefGoogle Scholar
  22. 22.
    Miyazaki S, Hou W-M, Takada M (1985) Controlled drug release by ultrasound irradiation. Chem Pharm Bull 33:428–431CrossRefGoogle Scholar
  23. 23.
    Li P, Zheng Y, Ran H, Tan J, Lin Y, Zhang Q, Ren J, Wang Z (2012) Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. J Control Release 162:349–354.  https://doi.org/10.1016/j.jconrel.2012.07.009CrossRefGoogle Scholar
  24. 24.
    Chen D, Wu J (2010) An in vitro feasibility study of controlled drug release from encapsulated nanometer liposomes using high intensity focused ultrasound. Ultrasonics 50:744–749.  https://doi.org/10.1016/j.ultras.2010.02.009CrossRefGoogle Scholar
  25. 25.
    Polyak B, Friedman G (2009) Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Deliv 6:53–70.  https://doi.org/10.1517/17425240802662795CrossRefGoogle Scholar
  26. 26.
    Rovers SA, Hoogenboom R, Kemmere MF, Keurentjes JTF (2012) Repetitive on-demand drug release by magnetic heating of iron oxide containing polymeric implants. Soft Matter 8:1623–1627.  https://doi.org/10.1039/C2SM06557FCrossRefGoogle Scholar
  27. 27.
    Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T (2010) High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl Mater Interfaces 2:1903–1911.  https://doi.org/10.1021/am100237pCrossRefGoogle Scholar
  28. 28.
    Fang K, Song L, Gu Z, Yang F, Zhang Y, Gu N (2015) Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids Surf B Biointerfaces 136:712–720.  https://doi.org/10.1016/j.colsurfb.2015.10.014CrossRefGoogle Scholar
  29. 29.
    Niikura K, Iyo N, Matsuo Y, Mitomo H, Ijiro K (2013) Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl Mater Interfaces 5:3900–3907.  https://doi.org/10.1021/am400590mCrossRefGoogle Scholar
  30. 30.
    Liu J, Yang G, Zhu W, Dong Z, Yang Y, Chao Y, Liu Z (2017) Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy. Biomaterials 146:40–48.  https://doi.org/10.1016/j.biomaterials.2017.09.007CrossRefGoogle Scholar
  31. 31.
    Luo D, Carter KA, Razi A, Geng J, Shao S, Giraldo D, Sunar U, Ortega J, Lovell JF (2016) Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 75:193–202.  https://doi.org/10.1016/j.biomaterials.2015.10.027CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Hamid Reza Rezaie
    • 1
  • Mohammadhossein Esnaashary
    • 1
  • Abolfazl Aref arjmand
    • 1
  • Andreas Öchsner
    • 2
  1. 1.Department of Engineering Materials, Ceramic and Biomaterial DivisionIran University of Science and TechnologyTehranIran
  2. 2.Faculty of Mechanical EngineeringEsslingen University of Applied SciencesEsslingenGermany

Personalised recommendations