International Symposium on Intelligence Computation and Applications

Computational Intelligence and Intelligent Systems pp 608-618 | Cite as

A Novel WDM-PON Based on Quantum Key Distribution FPGA Controller

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 575)


A novel wavelength-division-multiplexed passive optical network base on quantum key distribution FPGA controller is presented here. QKD FPGA is responsible for 1.25 Gbps upstream PRBS source, clock regeneration, phase modulation control, key sifting, privacy amplification, and upstream time-divided-multiple-access control on quantum channels. An 8-user network experiment shows that over 20 km fiber, the mean secure exchange key rate can reach up to 500 bps in total, with the acceptable quantum bit error rate below safe limit and few impact on classical channels. This scheme can provide a promising way for the coexistence between quantum key distribution and classical data service.


Quantum cryptography WDM PON Quantum key distribution Quantum communication Optical fiber communication 


  1. 1.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: India Proceeding of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, vol. 175 (1984)Google Scholar
  3. 3.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)CrossRefGoogle Scholar
  4. 4.
    Li, J., Kim, K.: Hidden attribute-based signatures without anonymity revocation. Inf. Sci. 180(9), 1681–1689 (2010). ElsevierCrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Li, J., Wang, Q., Wang, C., Ren, K.: Enhancing attribute-based encryption with attribute hierarchy. Mobile Networks and Applications (MONET) 16(5), 553–561 (2011). SpringerCrossRefGoogle Scholar
  6. 6.
    Wu, Z., Liang, B., You, L., Jian, Z., Li, J.: High dimension space projection-based biometric encryption for fingerprint with fuzzy minutia. Soft Comput. (2015, in Press). doi: 10.1007/s00500-015-1778-2
  7. 7.
    Wang, S., Chen, W., Guo, J.-F., Yin, Z.-Q., Li, H.-W., Zhou, Z., Guo, G.-C., Han, Z.-F.: 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37, 1008–1010 (2012)CrossRefGoogle Scholar
  8. 8.
    Li, J., Chen, X., Li, M., Li, J., Lee, P., Lou, W.: Secure deduplication with efficient and reliable convergent key management. IEEE Trans. Parallel Distrib. Syst. 25(6), 1615–1625 (2014)CrossRefGoogle Scholar
  9. 9.
    Ciurana, A., Mart´ınez-Mateo, J., Peev, M., Poppe, A., Zbinden, N., Ciurana, H., Martin, V.: Quantum metropolitan optical network based on wavelength division multiplexing. Opt. Express 22(2), 1576–1593 (2014)CrossRefGoogle Scholar
  10. 10.
    Razavi, M.: Multiple-access quantum key distribution networks. IEEE Trans. Commun. 60, 3071–3079 (2012)CrossRefGoogle Scholar
  11. 11.
    Townsend, P.D.: Quantum cryptography on multiuser optical fibre networks. Nature 385(6611), 47–49 (1997)CrossRefGoogle Scholar
  12. 12.
    Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DRAPA quantum network. In: Proceeding of SPIE, Quantum Information and Computation III, 5815, p. 138 (2005)Google Scholar
  13. 13.
    Peev, M., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)CrossRefGoogle Scholar
  14. 14.
    Chen, W., Han, Z.F., et al.: Field experiment on a “star type” metropolitan quantum key distribution network. IEEE Photonics Technol. Lett. 21(9), 575–577 (2009)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Sasaki, M., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011)CrossRefGoogle Scholar
  16. 16.
    Runser, R.J., Chapuran, T., et al.: Progress toward quantum communication networks: opportunities and challenges. In: Proceeding of SPIE, Optoelectronic Integrated Circuits IX, vol. 6476, p. 64760I (2007)Google Scholar
  17. 17.
    Bing, Q., Wen, Z., Li, Q., Hoi-Kwong, L.: Feasibility of quantum key distribution through a dense wavelength division multiplexing network. New J. Phys. 12, 103042 (2010)CrossRefGoogle Scholar
  18. 18.
    Patel, K.A., Dynes, J.F., Choi, I., Sharpe, A.W., Dixon, A.R., Yuan, Z.L., Penty, R.V., Shields, A.J.: Coexistence of high-bit-rate quantum key distribution and data on optical fiber. Phys. Rev. X 2, 041010 (2012)Google Scholar
  19. 19.
    Choi, I., Young, R.J., Townsend, P.D.: Quantum information to the home. New J. Phys. 13, 063039 (2011)CrossRefGoogle Scholar
  20. 20.
    Hao, W., et al.: A GPON network architecture with integrated QKD service. Acta Photonica Sin. 43, sup.1 (2014)Google Scholar
  21. 21.
    Choi, I., Young, R.J., Townsend, P.D.: Quantum key distribution on a 10 Gb/s WDM-PON. Opt. Express 18(9), 9600–9612 (2010)CrossRefGoogle Scholar
  22. 22.
    Cho, K.Y., Takushima, Y., Chung, Y.C.: 10-Gb/s operation of RSOA for WDM PON. IEEE Photonics Technol. Lett. 20(18), 1533–1535 (2008)CrossRefGoogle Scholar
  23. 23.
    Jin, N.Z., Xue, G.Y., Yue, G., Yong, Q.H., Ming, L.Z., Yan, G.Z.: A novel bidirectional RSOA based WDM-PON with downstream DPSK and upstream re-modulated OOK data. In: IEEE ICTON 2009Google Scholar
  24. 24.
    Guo, Q., Tran, A.V.: Reduction of backscattering noise in 2.5 and 10 Gbit/s RSOA-based WDM-PON. Electron. Lett. 47(24), 1333–1335 (2011)CrossRefGoogle Scholar
  25. 25.
    Keuo, Y.C., Yong, J.L., Hyeon, Y.C., Ayako, M., Akira, A., Yuichi, T., Yun, C.C.: Effects of reflection in RSOA-based WDM PON utilizing remodulation technique. IEEE J. Lightwave Technol. 27(10), 1286–1295 (2009)CrossRefGoogle Scholar
  26. 26.
    Peters, N.A., et al.: Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments. New J. Phys. 11, 045012 (2009)CrossRefGoogle Scholar
  27. 27.
    Lutkenhaus, N.: Estimates for practical quantum cryptography. Phys. Rev. A 59(5), 3301–3319 (1999)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.College of Communication EngineeringHangzhou Dianzi University HangzhouHangzhouChina
  2. 2.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina

Personalised recommendations