Social Saliency

  • Shuo Wang
  • Ralph Adolphs
Part of the Cognitive Science and Technology book series (CSAT)


Saliency historically refers to the bottom-up visual properties of an object that automatically drive attention. It is an ordinal property that depends on the relative saliency of one object with respect to others in the scene. Simple examples are a red spot on a green background, a horizontal bar among vertical bars, or a sudden onset of motion. Researchers have introduced the idea of a saliency map, an abstract and featureless map of the ‘winners’ of attention competition, to model the dynamics of visual attention. The standard saliency map involves channels like color, orientation, size, shape, movement or unique onset. But how do complex stimuli, especially stimuli with social meaning such as faces, pop out and attract attention? Suppose you are attending a big party: your attention might be captured by someone in a fancy dress, someone looking at you, someone who is attractive, familiar, or distinctive in some way. This happens essentially automatically, and encompasses a huge number of different stimuli that are all competing for your attention. What determines which is the most salient, and how can we best measure this?


Visual Search Superior Colliculus Biological Motion Superior Temporal Sulcus Head Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams RB, Kleck RE (2003) Perceived gaze direction and the processing of facial displays of emotion. Psychol Sci 14:644–647CrossRefGoogle Scholar
  2. Adolphs R (2008) Fear, faces, and the human amygdala. Curr Opin Neurobiol 18:166–172CrossRefGoogle Scholar
  3. Adolphs R (2010) What does the amygdala contribute to social cognition? Ann NY Acad Sci 1191:42–61CrossRefGoogle Scholar
  4. Adolphs R, Baron-Cohen S, Tranel D (2002) impaired recognition of social emotions following amygdala damage. J Cogn Neurosci 14:1264–1274CrossRefGoogle Scholar
  5. Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, Damasio AR (2005) A mechanism for impaired fear recognition after amygdala damage. Nature 433:68–72CrossRefGoogle Scholar
  6. Adolphs R, Sears L, Piven J (2001) Abnormal processing of social information from faces in autism. J Cogn Neurosci 13:232–240CrossRefGoogle Scholar
  7. Adolphs R, Tranel D, Damasio AR (1998) The human amygdala in social judgment. Nature 393:470–474CrossRefGoogle Scholar
  8. Adolphs R, Tranel D, Damasio H, Damasio A (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372:669–672CrossRefGoogle Scholar
  9. Adolphs R, Tranel D, Hamann S, Young AW, Calder AJ, Phelps EA, Anderson A, Lee GP, Damasio AR (1999) Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 37:1111–1117CrossRefGoogle Scholar
  10. Akiyama T, Kato M, Muramatsu T, Saito F, Umeda S, Kashima H (2006) Gaze but not arrows: a dissociative impairment after right superior temporal gyrus damage. Neuropsychologia 44:1804–1810CrossRefGoogle Scholar
  11. Amaral DG, Behniea H, Kelly JL (2003) Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience 118:1099–1120CrossRefGoogle Scholar
  12. Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145CrossRefGoogle Scholar
  13. Anderson BA, Laurent PA, Yantis S (2011) Value-driven attentional capture. Proc Natl Acad SciGoogle Scholar
  14. Anderson JR, Sallaberry P, Barbier H (1995) Use of experimenter-given cues during object-choice tasks by capuchin monkeys. Anim Behav 49:201–208CrossRefGoogle Scholar
  15. Anderson JS, Druzgal TJ, Froehlich A, DuBray MB, Lange N, Alexander AL, Abildskov T, Nielsen JA, Cariello AN, Cooperrider JR, Bigler ED, Lainhart JE (2010) Decreased Interhemispheric Functional Connectivity in Autism. Cerebral CortexGoogle Scholar
  16. Arcizet F, Mirpour K, Bisley JW (2011) A pure salience response in posterior parietal cortex. Cereb Cortex 21:2498–2506CrossRefGoogle Scholar
  17. Argyle M, Ingham R, Alkema F, McCallin M (1973) The different functions of gaze. Semiotica, 7:19Google Scholar
  18. Aviezer H, Trope Y, Todorov A (2012) Body cues, not facial expressions, discriminate between intense positive and negative emotions. Science 338:1225–1229CrossRefGoogle Scholar
  19. Bagshaw MH, Mackworth NH, Pribram KH (1972) The effect of resections of the inferotemporal cortex or the amygdala on visual orienting and habituation. Neuropsychologia 10:153–162CrossRefGoogle Scholar
  20. Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SCR (2000) The amygdala theory of autism. Neurosci Biobehav Rev 24:355–364CrossRefGoogle Scholar
  21. Basso MA, Wurtz RH (2002) Neuronal activity in substantia nigra pars reticulata during target selection. J Neurosci 22:1883–1894Google Scholar
  22. Batki A, Baron-Cohen S, Wheelwright S, Connellan J, Ahluwalia J (2000) Is there an innate gaze module? Evidence from human neonates. Infant Behav Dev 23:223–229CrossRefGoogle Scholar
  23. Bauman M, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874CrossRefGoogle Scholar
  24. Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3:563–573CrossRefGoogle Scholar
  25. Baxter MG, Parker A, Lindner CCC, Izquierdo AD, Murray EA (2000) Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci 20:4311–4319Google Scholar
  26. Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, Damasio A (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:1115–1118CrossRefGoogle Scholar
  27. Becker B, Mihov Y, Scheele D, Kendrick KM, Feinstein JS, Matusch A, Aydin M, Reich H, Urbach H, Oros-Peusquens A-M, Shah NJ, Kunz WS, Schlaepfer TE, Zilles K, Maier W, Hurlemann R (2012) Fear processing and social networking in the absence of a functional amygdala. Biol Psychiatry 72:70–77CrossRefGoogle Scholar
  28. Bermudez MA, Gobel C, Schultz W (2012) Sensitivity to temporal reward structure in amygdala neurons. Curr Biol CB 22:1839–1844CrossRefGoogle Scholar
  29. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369CrossRefGoogle Scholar
  30. Bichot NP, Rossi AF, Desimone R (2005) Parallel and serial neural mechanisms for visual search in macaque area V4. Science 308:529–534CrossRefGoogle Scholar
  31. Blair IV, Judd CM, Chapleau KM (2004) The influence of afrocentric facial features in criminal sentencing. Psychol Sci 15:674–679CrossRefGoogle Scholar
  32. Blakemore S-J, Decety J (2001) From the perception of action to the understanding of intention. Nat Rev Neurosci 2:561–567CrossRefGoogle Scholar
  33. Brothers L (1990) The social brain: a project for integrating primate behavior and neurophysiology in a new domain. Concepts Neurosci 1:27–51Google Scholar
  34. Burrows BE, Moore T (2009) Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons. J Neurosci 29:15169–15177CrossRefGoogle Scholar
  35. Byrnit J (2009) Gorillas’ (Gorilla gorilla) use of experimenter-given manual and facial cues in an object-choice task. Anim Cogn 12:401–404CrossRefGoogle Scholar
  36. Campbell R, Heywood CA, Cowey A, Regard M, Landis T (1990) Sensitivity to eye gaze in prosopagnosic patients and monkeys with superior temporal sulcus ablation. Neuropsychologia 28:1123–1142CrossRefGoogle Scholar
  37. Carlin JD, Calder AJ, Kriegeskorte N, Nili H, Rowe JB (2011) A head view-invariant representation of gaze direction in anterior superior temporal sulcus. Curr Biol CB 21:1817–1821CrossRefGoogle Scholar
  38. Chelazzi L, Miller EK, Duncan J, Desimone R (1993) A neural basis for visual search in inferior temporal cortex. Nature 363:345–347CrossRefGoogle Scholar
  39. Constantinidis C, Steinmetz MA (2001) Neuronal responses in area 7a to multiple-stimulus displays: i. neurons encode the location of the salient stimulus. Cereb Cortex 11:581–591CrossRefGoogle Scholar
  40. Dalton KM, Nacewicz BM, Alexander AL, Davidson RJ (2007) Gaze-fixation, brain activation, and amygdala volume in unaffected siblings of individuals with autism. Biol Psychiatry 61:512–520CrossRefGoogle Scholar
  41. Dalton KM, Nacewicz BM, Johnstone T, Schaefer HS, Gernsbacher MA, Goldsmith HH, Alexander AL, Davidson RJ (2005) Gaze fixation and the neural circuitry of face processing in autism. Nat Neurosci 8:519–526Google Scholar
  42. Dawson G, Webb SJ, McPartland J (2005) Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Dev Neuropsychol 27:403–424CrossRefGoogle Scholar
  43. Desimone R, Gross CG (1979) Visual areas in the temporal cortex of the macaque. Brain Res 178:363–380CrossRefGoogle Scholar
  44. DSM-5 (2013) Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric AssociationGoogle Scholar
  45. Dunbar RIM (2010) The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. Neurosci Biobehav Rev 34:260–268CrossRefGoogle Scholar
  46. Ecker C, Suckling J, Deoni SC, Lombardo MV, Bullmore ET, Baron-Cohen S, Catani M, Jezzard P, Barnes A, Bailey AJ, Williams SC, Murphy DGM (2012) Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: a multicenter magnetic resonance imaging study. Arch Gen Psychiatry 69:195–209CrossRefGoogle Scholar
  47. Emery NJ, Capitanio JP, Mason WA, Machado CJ, Mendoza SP, Amaral DG (2001) The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta). Behav Neurosci 115:515–544CrossRefGoogle Scholar
  48. Emery NJ, Lorincz EN, Perrett DI, Oram MW, Baker CI (1997) Gaze following and joint attention in Rhesus monkeys (Macaca mulatta). J Comp Psychol 111:286–293CrossRefGoogle Scholar
  49. Farran EK, Branson A, King BJ (2011) Visual search for basic emotional expressions in autism; impaired processing of anger, fear and sadness, but a typical happy face advantage. Res Autism Spectrum Disord 5:455–462CrossRefGoogle Scholar
  50. Field T (2003) Touch. MIT Press, CambridgeGoogle Scholar
  51. Fitzgerald DA, Angstadt M, Jelsone LM, Nathan PJ, Phan KL (2006) Beyond threat: Amygdala reactivity across multiple expressions of facial affect. NeuroImage 30:1441–1448CrossRefGoogle Scholar
  52. Freese JL, Amaral DG (2006) Synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J Comp Neurol 496:655–667CrossRefGoogle Scholar
  53. Friesen CK, Kingstone A (1998) The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychon Bull Rev 5:490–495CrossRefGoogle Scholar
  54. Gallace A, Spence C (2010) The science of interpersonal touch: an overview. Neurosci Biobehav Rev 34:246–259CrossRefGoogle Scholar
  55. Gamer M, Büchel C (2009) Amygdala activation predicts gaze toward fearful eyes. J Neurosci 29:9123–9126CrossRefGoogle Scholar
  56. Gazzola V, Spezio ML, Etzel JA, Castelli F, Adolphs R, Keysers C (2012) Primary somatosensory cortex discriminates affective significance in social touch. Proc Natl Acad SciGoogle Scholar
  57. Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111CrossRefGoogle Scholar
  58. Ghashghaei HT, Barbas H (2002) Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115:1261–1279CrossRefGoogle Scholar
  59. Gothard KM, Battaglia FP, Erickson CA, Spitler KM, Amaral DG (2007) Neural responses to facial expression and face identity in the monkey amygdala. J Neurophysiol 97:1671–1683CrossRefGoogle Scholar
  60. Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484CrossRefGoogle Scholar
  61. Gotts SJ, Simmons WK, Milbury LA, Wallace GL, Cox RW, Martin A (2012) Fractionation of social brain circuits in autism spectrum disorders. Brain 135:2711–2725CrossRefGoogle Scholar
  62. Grabenhorst F, Hernadi I, Schultz W (2012) Prediction of economic choice by primate amygdala neurons. Proc Natl Acad SciGoogle Scholar
  63. Grant EC, Mackintosh JH (1963) A comparison of the social postures of some common laboratory rodents. Behaviour 21:246–259CrossRefGoogle Scholar
  64. Gross CG (1994) How inferior temporal cortex became a visual area. Cereb Cortex 4:455–469CrossRefGoogle Scholar
  65. Hadj-Bouziane F, Liu N, Bell AH, Gothard KM, Luh W-M, Tootell RBH, Murray EA, Ungerleider LG (2012) Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proc Natl Acad Sci 109:E3640–E3648CrossRefGoogle Scholar
  66. Hall ET (1966) The hidden dimension. Doubleday, Garden City, N.YGoogle Scholar
  67. Happe F (2003) Cognition in autism: one deficit or many? Novartis Found Symp 251:198–207CrossRefGoogle Scholar
  68. Happe F, Ronald A, Plomin R (2006) Time to give up on a single explanation for autism. Nat Neurosci 9:1218–1220CrossRefGoogle Scholar
  69. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, Egan MF, Weinberger DR (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400–403CrossRefGoogle Scholar
  70. Harms M, Martin A, Wallace G (2010) Facial emotion recognition in autism spectrum disorders: a review of behavioral and neuroimaging studies. Neuropsychol Rev 20:290–322CrossRefGoogle Scholar
  71. Herry C, Bach DR, Esposito F, Di Salle F, Perrig WJ, Scheffler K, Luthi A, Seifritz E (2007) Processing of temporal unpredictability in human and animal amygdala. J Neurosci 27:5958–5966CrossRefGoogle Scholar
  72. Hickey C, Chelazzi L, Theeuwes J (2010) Reward changes salience in human vision via the anterior cingulate. J Neurosci 30:11096–11103CrossRefGoogle Scholar
  73. Hickey C, van Zoest W (2012) Reward creates oculomotor salience. Curr Biol 22:R219–R220CrossRefGoogle Scholar
  74. Hietanen J (2002) Social attention orienting integrates visual information from head and body orientation. Psychol Res 66:174–179CrossRefGoogle Scholar
  75. Hietanen JK (1999) Does your gaze direction and head orientation shift my visual attention? NeuroRep Rapid Commun Neurosci Res 10:3443–3447Google Scholar
  76. Hoffman EA, Haxby JV (2000) Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci 3:80–84CrossRefGoogle Scholar
  77. Hoffman KL, Gothard KM, Schmid MC, Logothetis NK (2007) Facial-expression and gaze-selective responses in the monkey amygdala. Curr Biol CB 17:766–772CrossRefGoogle Scholar
  78. Hood BM, Willen JD, Driver J (1998) Adult’s eyes trigger shifts of visual attention in human infants. Psychol Sci 9:131–134CrossRefGoogle Scholar
  79. Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 31:6–41CrossRefGoogle Scholar
  80. Ipata AE, Gee AL, Goldberg ME, Bisley JW (2006) Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task. J Neurosci 26:3656–3661CrossRefGoogle Scholar
  81. Izuma K, Matsumoto K, Camerer CF, Adolphs R (2011) Insensitivity to social reputation in autism. Proc Natl Acad Sci 108:17302–17307CrossRefGoogle Scholar
  82. Izuma K, Saito DN, Sadato N (2008) Processing of social and monetary rewards in the human striatum. Neuron 58:284–294CrossRefGoogle Scholar
  83. Joseph RM, Keehn B, Connolly C, Wolfe JM, Horowitz TS (2009) Why is visual search superior in autism spectrum disorder? Dev Sci 12:1083–1096CrossRefGoogle Scholar
  84. Kanner L (1943) Autistic disturbances of affective contact. Nerv Child 2:217–250Google Scholar
  85. Kemner C, van Ewijk L, van Engeland H, Hooge I (2008) Brief report: eye movements during visual search tasks indicate enhanced stimulus discriminability in subjects with PDD. J Autism Dev Disord 38:553–557CrossRefGoogle Scholar
  86. Kennedy DP, Adolphs R (2012) Perception of emotions from facial expressions in high-functioning adults with autism. Neuropsychologia 50:3313–3319CrossRefGoogle Scholar
  87. Kennedy DP, Glascher J, Tyszka JM, Adolphs R (2009) Personal space regulation by the human amygdala. Nat Neurosci 12:1226–1227CrossRefGoogle Scholar
  88. Kingstone A, Friesen CK, Gazzaniga MS (2000) Reflexive joint attention depends on lateralized cortical connections. Psychol Sci 11:159–166CrossRefGoogle Scholar
  89. Kingstone A, Tipper C, Ristic J, Ngan E (2004) The eyes have it!: An fMRI investigation. Brain Cogn 55:269–271CrossRefGoogle Scholar
  90. Kleinhans NM, Richards T, Johnson LC, Weaver KE, Greenson J, Dawson G, Aylward E (2011) fMRI evidence of neural abnormalities in the subcortical face processing system in ASD. NeuroImage 54:697–704CrossRefGoogle Scholar
  91. Kliemann D, Dziobek I, Hatri A, Jr Baudewig, Heekeren HR (2012) The role of the amygdala in atypical gaze on emotional faces in autism spectrum disorders. J Neurosci 32:9469–9476CrossRefGoogle Scholar
  92. Kliemann D, Dziobek I, Hatri A, Steimke R, Heekeren HR (2010) Atypical reflexive gaze patterns on emotional faces in autism spectrum disorders. J Neurosci 30:12281–12287CrossRefGoogle Scholar
  93. Klin A, Jones W, Schultz R, Volkmar F, Cohen D (2002) Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry 59:809–816CrossRefGoogle Scholar
  94. Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W (2009) Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature 459:257–261CrossRefGoogle Scholar
  95. Kling AS, Brothers LA (1992) The amygdala: neurobiological aspects of emotion, memory and mental dysfunctionGoogle Scholar
  96. Kreiman G, Koch C, Fried I (2000) Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci 3:946–953CrossRefGoogle Scholar
  97. LaBar K, LeDoux J, Spencer D, Phelps E (1995) Impaired fear conditioning following unilateral temporal lobectomy in humans. J Neurosci 15:6846–6855Google Scholar
  98. Langton SRH, O’Malley C, Bruce V (1996) Actions speak no louder than words: symmetrical cross-modal interference effects in the processing of verbal and gestural information. J Exp Psychol Hum Percept Perform 22:1357–1375CrossRefGoogle Scholar
  99. Langton SRH, Watt RJ, Bruce V (2000) Do the eyes have it? Cues to the direction of social attention. Trends Cogn Sci 4:50–59CrossRefGoogle Scholar
  100. Law Smith MJ, Montagne B, Perrett DI, Gill M, Gallagher L (2010) Detecting subtle facial emotion recognition deficits in high-functioning Autism using dynamic stimuli of varying intensities. Neuropsychologia 48:2777–2781CrossRefGoogle Scholar
  101. LeDoux JE (1993) Emotional memory systems in the brain. Behav Brain Res 58:69–79CrossRefGoogle Scholar
  102. Leonard CM, Rolls ET, Wilson FA, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 15:159–176CrossRefGoogle Scholar
  103. Lewis MH, Bodfish JW (1998) Repetitive behavior disorders in autism. Ment Retard Dev Disabil Res Rev 4:80–89CrossRefGoogle Scholar
  104. Lin A, Adolphs R, Rangel A (2012a) Impaired learning of social compared to monetary rewards in autism. Front Neurosci 6Google Scholar
  105. Lin A, Adolphs R, Rangel A (2012b) Social and monetary reward learning engage overlapping neural substrates. Soc Cogn Affect Neurosci 7:274–281CrossRefGoogle Scholar
  106. Lin A, Tsai K, Rangel A, Adolphs R (2012c) Reduced social preferences in autism: evidence from charitable donations. J Neurodev Disord 4:8CrossRefGoogle Scholar
  107. Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev Neurosci 19:577–621CrossRefGoogle Scholar
  108. Loken LS, Wessberg J, Morrison I, McGlone F, Olausson H (2009) Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci 12:547–548CrossRefGoogle Scholar
  109. Malkova L, Gaffan D, Murray EA (1997) Excitotoxic lesions of the amygdala fail to produce impairments in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in Rhesus monkeys. J Neurosci 17:6011–6020Google Scholar
  110. Mason WA, Capitanio JP, Machado CJ, Mendoza SP, Amaral DG (2006) Amygdalectomy and responsiveness to novelty in rhesus monkeys (Macaca mulatta): generality and individual consistency of effects. Emotion 6:73–81CrossRefGoogle Scholar
  111. Mazer JA, Gallant JL (2003) Goal-related activity in V4 during free viewing visual search: evidence for a ventral stream visual salience map. Neuron 40:1241–1250CrossRefGoogle Scholar
  112. McGaugh JL (2000) Memory–a century of consolidation. Science 287:248–251CrossRefGoogle Scholar
  113. McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28CrossRefGoogle Scholar
  114. McPeek RM, Keller EL (2002) Superior colliculus activity related to concurrent processing of saccade goals in a visual search task. J Neurophysiol 87:1805–1815CrossRefGoogle Scholar
  115. McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763CrossRefGoogle Scholar
  116. Miklösi A, Polgárdi R, Topál J, Csányi V (1998) Use of experimenter-given cues in dogs. Anim Cogn 1:113–121CrossRefGoogle Scholar
  117. Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–1359CrossRefGoogle Scholar
  118. Mormann F, Dubois J, Kornblith S, Milosavljevic M, Cerf M, Ison M, Tsuchiya N, Kraskov A, Quiroga RQ, Adolphs R, Fried I, Koch C (2011) A category-specific response to animals in the right human amygdala. Nat Neurosci 14:1247–1249CrossRefGoogle Scholar
  119. Morris JS, Frith CD, Perrett DI, Rowland D, Young AW, Calder AJ, Dolan RJ (1996) A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383:812–815CrossRefGoogle Scholar
  120. Murthy A, Ray S, Shorter SM, Schall JD, Thompson KG (2009) Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation. J Neurophysiol 101:2485–2506CrossRefGoogle Scholar
  121. Nacewicz BM, Dalton KM, Johnstone T, Long M, McAuliff E, Oakes T, Alexander AL, Davidson RJ (2006) Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Arch Gen Psychiatry 63:1417–1428CrossRefGoogle Scholar
  122. Neumann D, Spezio ML, Piven J, Adolphs R (2006) Looking you in the mouth: abnormal gaze in autism resulting from impaired top-down modulation of visual attention. Soc Cogn Affect Neurosci 1:194–202CrossRefGoogle Scholar
  123. Nummenmaa L, Hyönä J, Hietanen JK (2009) I’ll walk this way: eyes reveal the direction of locomotion and make passersby look and go the other way. Psychol Sci 20:1454–1458CrossRefGoogle Scholar
  124. O’Riordan M (2000) Superior modulation of activation levels of stimulus representations does not underlie superior discrimination in autism. Cognition 77:81–96CrossRefGoogle Scholar
  125. O’Riordan M, Plaisted K (2001) Enhanced discrimination in autism. Q J Exp Psychol A 54:961–979CrossRefGoogle Scholar
  126. O’Riordan M, Plaisted K, Driver J, Baron-Cohen S (2001) Superior visual search in autism. J Exp Psychol Hum Percept Perform 27:719–730CrossRefGoogle Scholar
  127. O’Riordan MA (2004) Superior visual search in adults with autism. Autism 8:229–248CrossRefGoogle Scholar
  128. Ogawa T, Komatsu H (2004) Target selection in area V4 during a multidimensional visual search task. J Neurosci 24:6371–6382CrossRefGoogle Scholar
  129. Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BG, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo AB, Bushnell MC (2002) Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5:900–904CrossRefGoogle Scholar
  130. Oosterhof NN, Todorov A (2008) The functional basis of face evaluation. Proc Natl Acad Sci 105:11087–11092CrossRefGoogle Scholar
  131. Osterling J, Dawson G (1994) Early recognition of children with autism: A study of first birthday home videotapes. J Autism Dev Disord 24:247–257CrossRefGoogle Scholar
  132. Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439:865–870CrossRefGoogle Scholar
  133. Paul L, Corsello C, Tranel D, Adolphs R (2010) Does bilateral damage to the human amygdala produce autistic symptoms? J Neurodev Disord 2:165–173CrossRefGoogle Scholar
  134. Peignot P, Anderson JR (1999) Use of experimenter-given manual and facial cues by gorillas (Gorilla gorilla) in an object-choice task. J Comp Psychol 113:253–260CrossRefGoogle Scholar
  135. Pelphrey K, Sasson N, Reznick JS, Paul G, Goldman B, Piven J (2002) Visual scanning of faces in autism. J Autism Dev Disord 32:249–261CrossRefGoogle Scholar
  136. Pelphrey KA, Singerman JD, Allison T, McCarthy G (2003) Brain activation evoked by perception of gaze shifts: the influence of context. Neuropsychologia 41:156–170CrossRefGoogle Scholar
  137. Pelphrey KA, Viola RJ, McCarthy G (2004) When strangers pass: processing of mutual and averted social gaze in the superior temporal sulcus. Psychol Sci 15:598–603CrossRefGoogle Scholar
  138. Perrett DI, Smith PAJ, Potter DD, Mistlin AJ, Head AS, Milner AD, Jeeves MA (1985) Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc R Soc Lond B Biol Sci 223:293–317CrossRefGoogle Scholar
  139. Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187CrossRefGoogle Scholar
  140. Philip RCM, Dauvermann MR, Whalley HC, Baynham K, Lawrie SM, Stanfield AC (2012) A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neurosci Biobehav Rev 36:901–942CrossRefGoogle Scholar
  141. Philip RCM, Whalley HC, Stanfield AC, Sprengelmeyer R, Santos IM, Young AW, Atkinson AP, Calder AJ, Johnstone EC, Lawrie SM, Hall J (2010) Deficits in facial, body movement and vocal emotional processing in autism spectrum disorders. Psychol Med 40:1919–1929CrossRefGoogle Scholar
  142. Piech RM, McHugo M, Smith SD, Dukic MS, Van Der Meer J, Abou-Khalil B, Most SB, Zald DH (2011) Attentional capture by emotional stimuli is preserved in patients with amygdala lesions. Neuropsychologia 49:3314–3319CrossRefGoogle Scholar
  143. Piech RM, McHugo M, Smith SD, Dukic MS, Van Der Meer J, Abou-Khalil B, Zald DH (2010) Fear-enhanced visual search persists after amygdala lesions. Neuropsychologia 48:3430–3435CrossRefGoogle Scholar
  144. Piven J, Arndt S, Bailey J, Havercam S, Andreasen N, Palmer P (1995) An MRI study of brain size in autism. Am J Psychiatry 152:1145–1149CrossRefGoogle Scholar
  145. Plaisted K, O’Riordan M, Baron-Cohen S (1998) Enhanced visual search for a conjunctive target in autism: a research note. J Child Psychol Psychiatry 39:777–783CrossRefGoogle Scholar
  146. Povinelli DJ, Eddy TJ (1996) Chimpanzees: joint visual attention. Psychol Sci 7:129–135CrossRefGoogle Scholar
  147. Puce A, Allison T, Bentin S, Gore JC, McCarthy G (1998) Temporal cortex activation in humans viewing eye and mouth movements. J Neurosci 18:2188–2199Google Scholar
  148. Purcell BA, Weigand PK, Schall JD (2012) Supplementary eye field during visual search: salience, cognitive control, and performance monitoring. J Neurosci 32:10273–10285CrossRefGoogle Scholar
  149. Ristic J, Friesen C, Kingstone A (2002) Are eyes special? It depends on how you look at it. Psychon Bull Rev 9:507–513CrossRefGoogle Scholar
  150. Rolls E (1984) Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Hum Neurobiol 3:209–222Google Scholar
  151. Rolls ET (2010) The affective and cognitive processing of touch, oral texture, and temperature in the brain. Neurosci Biobehav Rev 34:237–245CrossRefGoogle Scholar
  152. Rolls ET, O’Doherty J, Kringelbach ML, Francis S, Bowtell R, McGlone F (2003) Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb Cortex 13:308–317CrossRefGoogle Scholar
  153. Roozendaal B, Castello NA, Vedana G, Barsegyan A, McGaugh JL (2008) Noradrenergic activation of the basolateral amygdala modulates consolidation of object recognition memory. Neurobiol Learn Mem 90:576–579CrossRefGoogle Scholar
  154. Rosset D, Santos A, Da Fonseca D, Rondan C, Poinson F, Deruelle C (2011) More than just another face in the crowd: Evidence for an angry superiority effect in children with and without autism. Res Autism Spectrum Disord 5:949–956CrossRefGoogle Scholar
  155. Rutishauser U, Tudusciuc O, Neumann D, Mamelak AN, Heller AC, Ross IB, Philpott L, Sutherling WW, Adolphs R (2011) Single-unit responses selective for whole faces in the human amygdala. Curr Biol CB 21:1654–1660CrossRefGoogle Scholar
  156. Rutishauser U, Tudusciuc O, Wang S, Mamelak AN, Ross IB, Adolphs R (2013) Single-neuron correlates of atypical face processing in autism. Neuron 80:887–899CrossRefGoogle Scholar
  157. Sander D, Grandjean D, Pourtois G, Schwartz S, Seghier ML, Scherer KR, Vuilleumier P (2005) Emotion and attention interactions in social cognition: brain regions involved in processing anger prosody. NeuroImage 28:848–858CrossRefGoogle Scholar
  158. Sasson N (2006) The development of face processing in autism. J Autism Dev Disord 36:381–394CrossRefGoogle Scholar
  159. Sasson NJ, Elison JT, Turner-Brown LM, Dichter GS, Bodfish JW (2011) Brief report: circumscribed attention in young children with autism. J Autism Dev Disord 41:242–247CrossRefGoogle Scholar
  160. Sasson NJ, Turner-Brown LM, Holtzclaw TN, Lam KSL, Bodfish JW (2008) Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism Res 1:31–42CrossRefGoogle Scholar
  161. Sato W, Okada T, Toichi M (2007) Attentional shift by gaze is triggered without awareness. Exp Brain Res 183:87–94CrossRefGoogle Scholar
  162. Sato W, Yoshikawa S, Kochiyama T, Matsumura M (2004) The amygdala processes the emotional significance of facial expressions: an fMRI investigation using the interaction between expression and face direction. NeuroImage 22:1006–1013CrossRefGoogle Scholar
  163. Scaife M, Bruner JS (1975) The capacity for joint visual attention in the infant. Nature 253:265–266CrossRefGoogle Scholar
  164. Scheumann M, Call J (2004) The use of experimenter-given cues by South African fur seals (Arctocephalus pusillus). Anim Cogn 7:224–230CrossRefGoogle Scholar
  165. Schirmer A, Teh KS, Wang S, Vijayakumar R, Ching A, Nithianantham D, Escoffier N, Cheok AD (2011) Squeeze me, but don’t tease me: Human and mechanical touch enhance visual attention and emotion discrimination. Soc Neurosci 6:219–230CrossRefGoogle Scholar
  166. Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679CrossRefGoogle Scholar
  167. Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392–6401CrossRefGoogle Scholar
  168. Sheinberg DL, Logothetis NK (2001) Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision. J Neurosci 21:1340–1350Google Scholar
  169. Shen K, Paré M (2007) Neuronal activity in superior colliculus signals both stimulus identity and saccade goals during visual conjunction search. J Vis 7Google Scholar
  170. Shen K, Paré M (2014) Predictive saccade target selection in superior colliculus during visual search. J Neurosci 34:5640–5648CrossRefGoogle Scholar
  171. South M, Ozonoff S, McMahon W (2005) Repetitive behavior profiles in asperger syndrome and high-functioning autism. J Autism Dev Disord 35:145–158CrossRefGoogle Scholar
  172. Spezio ML, Adolphs R, Hurley RSE, Piven J (2007a) Abnormal use of facial information in high-functioning autism. J Autism Dev Disord 37:929–939CrossRefGoogle Scholar
  173. Spezio ML, Adolphs R, Hurley RSE, Piven J (2007b) Analysis of face gaze in autism using “Bubbles”. Neuropsychologia 45:144–151CrossRefGoogle Scholar
  174. Tanaka K (1997) Mechanisms of visual object recognition: monkey and human studies. Curr Opin Neurobiol 7:523–529CrossRefGoogle Scholar
  175. Thomas NWD, Paré M (2007) Temporal processing of saccade targets in parietal cortex area lip during visual search. J Neurophysiol 97:942–947CrossRefGoogle Scholar
  176. Thompson KG, Bichot NP (2005) A visual salience map in the primate frontal eye field. Prog Brain Res 147:249–262Google Scholar
  177. Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76:4040–4055Google Scholar
  178. Todd RM, Talmi D, Schmitz TW, Susskind J, Anderson AK (2012) Psychophysical and neural evidence for emotion-enhanced perceptual vividness. J Neurosci 32:11201–11212CrossRefGoogle Scholar
  179. Todorov A, Mandisodza AN, Goren A, Hall CC (2005) Inferences of competence from faces predict election outcomes. Science 308:1623–1626CrossRefGoogle Scholar
  180. Tolias AS, Moore T, Smirnakis SM, Tehovnik EJ, Siapas AG, Schiller PH (2001) eye movements modulate visual receptive fields of v4 neurons. Neuron 29:757–767CrossRefGoogle Scholar
  181. Tsao DY, Freiwald WA, Tootell RBH, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311:670–674CrossRefGoogle Scholar
  182. Tye KM, Stuber GD, de Ridder B, Bonci A, Janak PH (2008) Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature 453:1253–1257CrossRefGoogle Scholar
  183. van Boxtel JJA, Lu H (2011) Visual search by action category. J Vis 11Google Scholar
  184. van Boxtel JJA, Lu H (2012) Signature movements lead to efficient search for threatening actions. PLoS ONE 7:e37085CrossRefGoogle Scholar
  185. Vuilleumier P (2002) Perceived gaze direction in faces and spatial attention: a study in patients with parietal damage and unilateral neglect. Neuropsychologia 40:1013–1026CrossRefGoogle Scholar
  186. Vuilleumier P (2005) How brains beware: neural mechanisms of emotional attention. Trends Cogn Sci 9:585–594CrossRefGoogle Scholar
  187. Vuilleumier P, Richardson MP, Armony JL, Driver J, Dolan RJ (2004) Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nat Neurosci 7:1271–1278CrossRefGoogle Scholar
  188. Wallace G, Case L, Harms M, Silvers J, Kenworthy L, Martin A (2011) Diminished sensitivity to sad facial expressions in high functioning autism spectrum disorders is associated with symptomatology and adaptive functioning. J Autism Dev Disord 41:1475–1486CrossRefGoogle Scholar
  189. Wang S, Fukuchi M, Koch C, Tsuchiya N (2012a) Spatial attention is attracted in a sustained fashion toward singular points in the optic flow. PLoS ONE 7:e41040CrossRefGoogle Scholar
  190. Wang S, Krajbich I, Adolphs R, Tsuchiya N (2012b) The role of risk aversion in non-conscious decision-making. Front Psychol 3Google Scholar
  191. Wang S, Tudusciuc O, Mamelak AN, Ross IB, Adolphs R, Rutishauser U (2014a) Neurons in the human amygdala selective for perceived emotion. Proc Natl Acad Sci USA 111:E3110–E3119Google Scholar
  192. Wang S, Xu J, Jiang M, Zhao Q, Hurlemann R, Adolphs R (2014b) Autism spectrum disorder, but not amygdala lesions, impairs social attention in visual search. Neuropsychologia 63:259–274Google Scholar
  193. Wang S, Tsuchiya N, New J, Hurlemann R, Adolphs R (2015) Preferential attention to animals and people is independent of the amygdala. Soc Cogn Affect Neurosci 10:371–380Google Scholar
  194. Watson KK, Platt ML (2012) Social signals in primate orbitofrontal cortex. Curr Biol CB 22:2268–2273CrossRefGoogle Scholar
  195. Willis J, Todorov A (2006) First impressions: making up your mind after a 100-ms exposure to a face. Psychol Sci 17:592–598CrossRefGoogle Scholar
  196. Willis ML, Palermo R, Burke D, McGrillen K, Miller L (2010) Orbitofrontal cortex lesions result in abnormal social judgements to emotional faces. Neuropsychologia 48:2182–2187CrossRefGoogle Scholar
  197. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494CrossRefGoogle Scholar
  198. Wolfe JM (2012) The rules of guidance in visual search. In: Kundu M et al. (ed) Perception and machine intelligence, vol 7143, pp 1–10. Springer, HeidelbergGoogle Scholar
  199. Wolfe JM, Horowitz TS (2004) What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci 5:495–501CrossRefGoogle Scholar
  200. Yang J, Bellgowan PSF, Martin A (2012) Threat, domain-specificity and the human amygdala. Neuropsychologia 50:2566–2572CrossRefGoogle Scholar
  201. Zhang B, Noble PL, Winslow JT, Pine DS, Nelson EE (2012) Amygdala volume predicts patterns of eye fixation in rhesus monkeys. Behav Brain Res 229:433–437CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Computation and Neural SystemsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations