Advertisement

The Pupil as Marker of Cognitive Processes

  • Wolfgang EinhäuserEmail author
Chapter
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

Of all peripheral measures of (neuro-)physiological activity, pupil size is probably the easiest to access. Far beyond its well-known reaction to light incident on the eye, pupil size is a rich marker of many cognitive processes. Since the turn of the millennium, the increasing availability of video-based eyetracking devices has led to a renaissance of pupillometry as research technique in the cognitive neurosciences. The chapter reviews recent developments in this field. How do emotional and cognitive factors, attention and memory, influence pupil size? What is the role of the pupil in social interactions and which applications of pupillometry are currently envisioned? How can pupillometry be combined with other techniques? And what are the limits, pitfalls and caveats when using the pupil as marker of cognitive processes?

Keywords

Cognitive Load Superior Colliculus Pupil Dilation Pupil Size Rapid Serial Visual Presentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aboyoun DC, Dabbs JN (1998) The hess pupil dilation findings: sex or novelty? Soc Behav Pers 26(4):415–419CrossRefGoogle Scholar
  2. Amemiya S, Ohtomo K (2012) Effect of the observed pupil size on the amygdala of the beholders. Soc Cogn Affect Neurosci 7:332–341. doi: 10.1093/scan/nsr013 CrossRefGoogle Scholar
  3. Astafiev SV, Snyder AZ, Shulman GL, Corbetta M (2010) Comment on “Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI” and “Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area”. Science 328(5976):309. doi: 10.1126/science.1177200 CrossRefGoogle Scholar
  4. Bárány H, Halldén U (1948) Phasic inhibition of the light reflex of the pupil during retinal rivlary. J Neurophysiol 11(1):25–30Google Scholar
  5. Berrien FK, Huntington GH (1943) An exploratory study of pupillary responses during deception. J Exp Psychol 32(5):443–449CrossRefGoogle Scholar
  6. Beatty J, Wagoner BL (1978) Pupillometric signs of brain activation vary with level of cognitive processing. Science 199(4334):1216–1218CrossRefGoogle Scholar
  7. Beatty J (1982) Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol Bull 91(2):276–292CrossRefGoogle Scholar
  8. Berridge CW (2008) Noradrenergic modulation of arousal. Brain Res Rev 58(1):1–17. doi: 10.1016/j.brainresrev.2007.10.013 CrossRefGoogle Scholar
  9. Binda P, Pereverzeva M, Murray SO (2013) Attention to bright surfaces enhances the pupillary light reflex. J Neurosci 33:2199–2204CrossRefGoogle Scholar
  10. Binda P, Murray SO (2015) Spatial attention increases the pupillary response to light changes. J Vis 15(2):1. doi: 10.1167/15.2.1 CrossRefGoogle Scholar
  11. Binda P, Pereverzeva M, Murray SO (2014) Pupil size reflects the focus of feature-based attention. J Neurophysiol 112(12):3046–3052. http://dx.doi.org/10.1152/jn.00502.2014
  12. Bijleveld E, Custers R, Aarts H (2009) The unconscious eye opener: pupil dilation reveals strategic recruitment of resources upon presentation of subliminal reward. cues. Psychol Sci 20(11):1313–1315. doi: 10.1111/j.1467-9280.2009.02443.x CrossRefGoogle Scholar
  13. Bitsios P, Szabadi E, Bradshaw CM (2002) Relationship of the ‘fear-inhibited light reflex’ to the level of state/trait anxiety in healthy subjects. Int J Psychophysiol 43(2):177–184CrossRefGoogle Scholar
  14. Bitsios P, Szabadi E, Bradshaw CM (2004) The fear-inhibited light reflex: importance of the anticipation of an aversive event. Int J Psychophysiol 52(1):87–95CrossRefGoogle Scholar
  15. Boersma F, Wilton K, Barham R, Muir W (1970) Effects of arithmetic problem difficulty on pupillary dilation in normals and educable retardates. J Exp Child Psychol 9(2):142–155CrossRefGoogle Scholar
  16. Bradley MM, Miccoli L, Escrig MA, Lang PJ (2008) The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45:602–607CrossRefGoogle Scholar
  17. Bradshaw J (1967) Pupil size as a measure of arousal during information processing. Nature 216(5114):515–516CrossRefGoogle Scholar
  18. Briand KA, Strallow D, Hening W, Poizner H, Sereno AB (1999) Control of voluntary and reflexive saccades in Parkinson’s disease. Exp Brain Res 129:38–48CrossRefGoogle Scholar
  19. Brisson J, Mainville M, Mailloux D, Beaulieu C, Serres J, Sirois S (2013) Pupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackers. Behav Res Meth 45(4):1322–31. doi: 10.3758/s13428-013-0327-0
  20. Bull R, Shead G (1979) Pupil dilation, sex of stimulus, and age and sex of observer. Percept Mot Skills 49(1):27–30CrossRefGoogle Scholar
  21. Burkhouse KL, Siegle GJ, Gibb BE (2014) Pupillary reactivity to emotional stimuli in children of depressed and anxious mothers. J Child Psychol Psychiatry 55(9):1009–1016. doi: 10.1111/jcpp.12225 CrossRefGoogle Scholar
  22. Campbell FW, Gregory AH (1960) Effect of size of pupil on visual acuity. Nature 187:1121–1123CrossRefGoogle Scholar
  23. Chapman CR, Oka S, Bradshaw DH, Jacobson RC, Donaldson GW (1999) Phasic pupil dilation response to noxious stimulation in normal volunteers: relationship to brain evoked potentials and pain report. Psychophysiology 36(1):44–52CrossRefGoogle Scholar
  24. Clayton EC, Rajkowski J, Cohen JD, Aston-Jones G (2004) Phasic activation of monkey locus ceruleus neurons by simple decisions in a forced-choice task. J Neurosci 24(44):9914–9920CrossRefGoogle Scholar
  25. Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433(7027):749–754CrossRefGoogle Scholar
  26. Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical substrates for exploratory decisions in humans. Nature 441(7095):876–879CrossRefGoogle Scholar
  27. Dayan P, Yu AJ (2006) Phasic norepinephrine: a neural interrupt signal for unexpected events. Network 17(4):335–350CrossRefGoogle Scholar
  28. Demos KE, Kelley WM, Ryan SL, Davis FC, Whalen PJ (2008) Human amygdala sensitivity to the pupil size of others. Cereb Cortex 18:2729–2734CrossRefGoogle Scholar
  29. Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36(12):1827–1837CrossRefGoogle Scholar
  30. Einhäuser W, Stout J, Koch C, Carter O (2008) Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proc Natl Acad Sci USA 105(5):1704–1709. doi: 10.1073/pnas.0707727105 CrossRefGoogle Scholar
  31. Einhäuser W, Koch C, Carter OL (2010) Pupil dilation betrays the timing of decisions. Front Hum Neurosci 4:18. doi: 10.3389/fnhum.2010.00018 Google Scholar
  32. Fahle MW, Stemmler T, Spang KM (2011) How much of the “unconscious” is just pre -threshold? Front Hum Neurosci 5:120. doi: 10.3389/fnhum.2011.00120 CrossRefGoogle Scholar
  33. Felmingham KL, Rennie C, Manor B, Bryant RA (2011) Eye tracking and physiological reactivity to threatening stimuli in posttraumatic stress disorder. J Anxiety Disord 25(5):668–673. doi: 10.1016/j.janxdis.2011.02.010 CrossRefGoogle Scholar
  34. Fish SC, Granholm E (2008) Easier tasks can have higher processing loads: task difficulty and cognitive resource limitations in schizophrenia. J Abnorm Psychol 117(2):355–363CrossRefGoogle Scholar
  35. Fountoulakis KN, St Kaprinis G, Fotiou F (2004) Is there a role for pupillometry in the diagnostic approach of Alzheimer’s disease? A review of the data. J Am Geriatr Soc 52(1):166–168CrossRefGoogle Scholar
  36. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66(2):137–147CrossRefGoogle Scholar
  37. Friedman D, Hakerem G, Sutton S, Fleiss JL (1973) Effect of stimulus uncertainty on the pupillary dilation response and the vertex evoked potential. Electroencephalogr Clin Neurophysiol 34(5):475–484CrossRefGoogle Scholar
  38. Gagl B, Hawelka S, Hutzler F (2011) Systematic influence of gaze position on pupil size measurement: analysis and correction. Behav Res Meth 43(4):1171–1181. doi: 10.3758/s13428-011-0109-5 CrossRefGoogle Scholar
  39. Garcia-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, Leu-Semenescu S, Gallea C, Quattrocchi G, Pita Lobo P, Poupon C, Benali H, Arnulf I, Vidailhet M, Lehericy S (2013) The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson’s disease. Brain 136:2120–2129CrossRefGoogle Scholar
  40. Geuter S, Gamer M, Onat S, Büchel C (2014) Parametric trial-by-trial prediction of pain by easily available physiological measures. Pain 155(5):994–1001CrossRefGoogle Scholar
  41. Gilzenrat MS, Nieuwenhuis S, Jepma M, Cohen JD (2010) Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn Affect Behav Neurosci 10(2):252–269. doi: 10.3758/CABN.10.2.252 CrossRefGoogle Scholar
  42. Giza E, Fotiou D, Bostantjopoulou S, Katsarou Z, Karlovasitou A (2011) Pupil light reflex in Parkinson’s disease: evaluation with pupillometry. Int J Neurosci 121(1):37–43. doi: 10.3109/00207454.2010.526730 CrossRefGoogle Scholar
  43. Granholm E, Morris SK, Sarkin AJ, Asarnow RF, Jeste DV (1997) Pupillary responses index overload of working memory resources in schizophrenia. J Abnorm Psychol 106(3):458–467CrossRefGoogle Scholar
  44. Granholm E, Verney SP (2004) Pupillary responses and attentional allocation problems on the backward masking task in schizophrenia. Int J Psychophysiol 52(1):37–51CrossRefGoogle Scholar
  45. Harrison NA, Singer T, Rotshtein P, Dolan RJ, Critchley HD (2006) Pupillary contagion: central mechanisms engaged in sadness processing. Soc Cogn Affect Neurosci 1:5–17CrossRefGoogle Scholar
  46. Harrison NA, Gray MA, Critchley HD (2009) Dynamic pupillary exchange engages brain regions encoding social salience. Soc Neurosci 4:233–243. doi: 10.1080/17470910802553508 CrossRefGoogle Scholar
  47. Hayes TR, Petrov AA (2015) Mapping and correcting the influence of gaze position on pupil size measurements. Behav Res MethGoogle Scholar
  48. Heaver B, Hutton SB (2011) Keeping an eye on the truth? Pupil size changes associated with recognition memory. Memory 19(4):398–405. doi: 10.1080/09658211.2011.575788 CrossRefGoogle Scholar
  49. Hess EH, Polt JM (1960) Pupil size as related to interest value of visual stimuli. Science 132(3423):349–350CrossRefGoogle Scholar
  50. Hess EH, Polt JM (1964) Pupil size in relation to mental activity during simple problem-solving. Science 143:1190–1192. doi: 10.1126/science.143.3611.1190 CrossRefGoogle Scholar
  51. Hess EH (1965) Attitude and pupil size. Sci Am 212:46–54CrossRefGoogle Scholar
  52. Hess EH, Petrovich SB (1987) Pupillary behavior in communication. In: Siegman AW, Feldstein S (eds) Nonverbal behavior and communication. Hillsdale, NJ, Lawrence ErlbaumGoogle Scholar
  53. Hupé JM, Lamirel C, Lorenceau J (2009) Pupil dynamics during bistable motion perception. J Vis 9(7):10. doi: 10.1167/9.7.10 CrossRefGoogle Scholar
  54. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual-attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20:1254–1259CrossRefGoogle Scholar
  55. Janisse MP (1974) Pupil size, affect and exposure frequency. Soc Behav Pers 2:125–146CrossRefGoogle Scholar
  56. James W (1890) The principles of psychology. Holt, NewYorkCrossRefGoogle Scholar
  57. Jepma M, Nieuwenhuis S (2011) Pupil diameter predicts changes in the exploration-exploitation trade-off: evidence for the adaptive gain theory. J Cogn Neurosci 23(7):1587–1596. doi: 10.1162/jocn.2010.21548 CrossRefGoogle Scholar
  58. Kahneman D, Beatty J (1966) Pupil diameter and load on memory. Science 154(3756):1583–1585CrossRefGoogle Scholar
  59. Kalwani RM, Gold JI (2008) The role of the locus coeruleus in motor commitment using the countermanding task. Soc Neurosci Abstr 165–169Google Scholar
  60. Kamp SM, Donchin E (2015) ERP and pupil responses to deviance in an oddball paradigm. Psychophysiology 52(4):460–471. doi: 10.1111/psyp.12378 CrossRefGoogle Scholar
  61. Kafkas A, Montaldi D (2011) Recognition memory strength is predicted by pupillary responses at encoding while fixation patterns distinguish recollection from familiarity. Q J Exp Psychol (Hove) 64(10):1971–1989CrossRefGoogle Scholar
  62. Kietzmann TC, Geuter S, König P (2011) Overt visual attention as a causal factor of perceptual awareness. PLoS ONE 6(7):e22614. doi: 10.1371/journal.pone.0022614 CrossRefGoogle Scholar
  63. Knight R (1996) Contribution of human hippocampal region to novelty detection. Nature 383(6597):256–259CrossRefGoogle Scholar
  64. Kojima T, Matsushima E, Ohta K, Toru M, Han YH, Shen YC, Moussaoui D, David I, Sato K, Yamashita I, Kathmann N, Hippius H, Thavundayil JX, Lal S, Vasavan Nair NP, Potkin SG, Prilipko L (2001) Stability of exploratory eye movements as a marker of schizophrenia—a WHO multi-center study. Schizophr Res 52:203–213. doi: 10.1016/S0920-9964(00)00181-X CrossRefGoogle Scholar
  65. Kloosterman NA, Meindertsma T, van Loon AM, Lamme VA, Bonneh YS, Donner TH (2015) Pupil size tracks perceptual content and surprise. Eur J Neurosci 41(8):1068–1078. doi: 10.1111/ejn.12859 CrossRefGoogle Scholar
  66. Kristjansson SD, Stern JA, Brown TB, Rohrbaugh JW (2009) Detecting phasic lapses in alertness using pupillometric measures. Appl Ergon 40(6):978–986. doi: 10.1016/j.apergo.2009.04.007 CrossRefGoogle Scholar
  67. Laeng B, Endestad T (2012) Bright illusions reduce the eye’s pupil. Proc Natl Acad Sci USA 109(6):2162–2167. doi: 10.1073/pnas.1118298109 CrossRefGoogle Scholar
  68. Laeng B, Sulutvedt U (2014) The eye pupil adjusts to imaginary light. Psychol Sci 25(1):188–197. doi: 10.1177/0956797613503556 CrossRefGoogle Scholar
  69. Libet B, Gleason CA, Wright EW, Pearl DK (1983) Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 106 (Pt 3):623–642Google Scholar
  70. Libby WL Jr, Lacey BC, Lacey JI (1973) Pupillary and cardiac activity during visual attention. Psychophysiology 10(3):270–294CrossRefGoogle Scholar
  71. Loewenfeld I (1993) The pupil: Anatomy, physiology, and clinical applications. Wayne State University Press, Detroit, MIGoogle Scholar
  72. Lorber M, Zuber BL, Stark L (1965) Suppression of pupillary light reflex in binocular rivalry and saccadic suppression. Nature 208:558CrossRefGoogle Scholar
  73. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299(5604):245–247CrossRefGoogle Scholar
  74. Magliero A (1983) Pupil dilations following pairs of identical and related to-be-remembered words. Mem Cognit 11(6):609–615CrossRefGoogle Scholar
  75. Mathôt S, van der Linden L, Grainger J, Vitu F (2015a) The pupillary light response reflects eye-movement preparation. J Exp Psychol Hum Percept Perform 41(1):28–35. doi: 10.1037/a0038653 CrossRefGoogle Scholar
  76. Mathôt S, van der Linden L, Grainger J, Vitu F (2013) The pupillary light response reveals the focus of covert visual attention. PLoS One 8(10):e78168. doi: 10.1371/journal.pone.0078168. eCollection 2013
  77. Mathôt S, Siebold A, Donk M, Vitu F (2015b) Large pupils predict goal-driven eye movements. J Exp Psychol Gen 144(3):513–521Google Scholar
  78. May PR (1948) Pupillary abnormalities in schizophrenia and during muscular effort. J Ment Sci 94:89–98Google Scholar
  79. van der Meer E, Friedrich M, Nuthmann A, Stelzel C, Kuchinke L (2003) Picture-word matching: flexibility in conceptual memory and pupillary responses. Psychophysiology 40(6):904–913CrossRefGoogle Scholar
  80. van der Meer E, Beyer R, Horn J, Foth M, Bornemann B, Ries J, Kramer J, Warmuth E, Heekeren HR, Wartenburger I (2010) Resource allocation and fluidintelligence: insights from pupillometry. Psychophysiology 47(1):158–169. doi: 10.1111/j.1469-8986.2009.00884.x CrossRefGoogle Scholar
  81. Micieli G, Tassorelli C, Martignoni E, Pacchetti C, Bruggi P, Magri M, Nappi G (1991) Disordered pupil reactivity in Parkinson’s disease. Clin Auton Res 1(1):55–58CrossRefGoogle Scholar
  82. Morgan ST, Hansen JC, Hillyard SA (1996) Selective attention to stimulus location modulates the steady-state visual evoked potential. Proc Natl Acad Sci USA May 14; 93(10):4770–4774Google Scholar
  83. Murphy PR, O’Connell RG, O’Sullivan M, Robertson IH, Balsters JH (2014) Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum Brain Mapp 35(8):4140–4154. doi: 10.1002/hbm.22466 CrossRefGoogle Scholar
  84. Murphy PR, Robertson IH, Balsters JH, O’Connell RG (2011) Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology 48(11):1532–1543. doi: 10.1111/j.1469-8986.2011.01226.x
  85. Naber M, Frässle S, Einhäuser W (2011) Perceptual rivalry: reflexes reveal the gradual nature of visual awareness. PLoS ONE 6(6):e20910CrossRefGoogle Scholar
  86. Naber M, Hilger M, Einhäuser W (2012) Animal detection and identification in natural scenes: image statistics and emotional valence. J Vis 12(1):25. doi: 10.1167/12.1.25
  87. Naber M, Stoll J, Einhäuser W, Carter O (2013a) How to become a mentalist: reading decisions from a competitor’s pupil can be achieved without training but requires instruction. PLoS ONE 8(8):e73302CrossRefGoogle Scholar
  88. Naber M, Nakayama K (2013) Pupil responses to high-level image content. J Vis 13(6):7. doi: 10.1167/13.6.7
  89. Naber M, Alvarez GA, Nakayama K (2013b) Tracking the allocation of attention using human pupillary oscillations. Front Psychol 4:919. doi: 10.3389/fpsyg.2013.00919
  90. Naber M, Frässle S, Rutishauser U, Einhäuser W (2013c) Pupil size signals novelty and predicts later retrieval success for declarative memories of natural scenes. J Vis 13(2):11. doi: 10.1167/13.2.11
  91. Nagai M, Wada M, Sunaga N (2002) Trait anxiety affects the pupillary light reflex in college students. Neurosci Lett 328(1):68–70CrossRefGoogle Scholar
  92. Nassar MR, Rumsey KM, Wilson RC, Parikh K, Heasly B, Gold JI (2012) Rational regulation of learning dynamics by pupil-linked arousal systems. Nat Neurosci 15(7):1040–1046. doi: 10.1038/nn.3130 CrossRefGoogle Scholar
  93. Nuthmann A, van der Meer E (2005) Time’s arrow and pupillary response. Psychophysiology 42(3):306–317CrossRefGoogle Scholar
  94. Otero SC, Weekes BS, Hutton SB (2011) Pupil size changes during recognition memory. Psychophysiology 4:1346–1353CrossRefGoogle Scholar
  95. Papesh MH, Goldinger SD, Hout MC (2012) Memory strength and specificity revealed by pupillometry. Int J Psychophysiol 83(1):56–64. doi: 10.1016/j.ijpsycho.2011.10.002 CrossRefGoogle Scholar
  96. Park JC, McAnany JJ (2015) Effect of stimulus size and luminance on the rod-, cone-, and melanopsin-mediated pupillary light reflex. J Vis 15(3):13. doi: 10.1167/15.3.13
  97. Partala T, Surakka V (2003) Pupil size variation as an indication of affective processing. Int J Human-Comput Stud 59:185–198CrossRefGoogle Scholar
  98. Paulus FM, Krach S, Blanke M, Roth C, Belke M, Sommer J, Müller-Pinzler L, Menzler K, Jansen A, Rosenow F, Bremmer F, Einhäuser W, Knake S (2015) Fronto-insula network activity explains emotional dysfunctions in juvenile myoclonic epilepsy: combined evidence from pupillometry and fMRI. Cortex 65C:219–231CrossRefGoogle Scholar
  99. Pavlov IP (1927) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press, LondonGoogle Scholar
  100. Poock GK (1973) Information processing versus pupil diameter. Percept Mot Skills 37(3):1000–1002CrossRefGoogle Scholar
  101. Prettyman R, Bitsios P, Szabadi E (1997) Altered pupillary size and darkness and light reflexes in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 62(6):665–668CrossRefGoogle Scholar
  102. Preuschoff K, ‘t Hart BM, Einhäuser W (2011) Pupil dilation signals surprise: evidence for noradrenaline’s role in decision making. Front Neurosci 5:115. doi: 10.3389/fnins.2011.00115
  103. Privitera CM, Renninger LW, Carney T, Klein S, Aguilar M (2010) Pupil dilation during visual target detection. J Vis 10(10):3. doi: 10.1167/10.10.3 CrossRefGoogle Scholar
  104. Qiyuan J, Richer F, Wagoner BL, Beatty J (1985) The pupil and stimulus probability. Psychophysiology 22(5):530–534CrossRefGoogle Scholar
  105. Raisig S, Welke T, Hagendorf H, van der Meer E (2010) I spy with my little eye: detection of temporal violations in event sequences and the pupillary response. Int J Psychophysiol 76(1):1–8. doi: 10.1016/j.ijpsycho.2010.01.006 CrossRefGoogle Scholar
  106. Rajkowski J, Kubiak P, Aston-Jones G (1993) Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Soc Neurosci Abstr 19:974Google Scholar
  107. Reinhard G, Lachnit H, König S (2006) Tracking stimulus processing in Pavlovian pupillary conditioning. Psychophysiology 43(1):73–83CrossRefGoogle Scholar
  108. Rieger G, Savin-Williams RC (2012) The eyes have it: sex and sexual orientation differences in pupil dilation patterns. PLoS ONE 7(8):e40256. doi: 10.1371/journal.pone.0040256 CrossRefGoogle Scholar
  109. Scheepers C, Mohr S, Fischer MH, Roberts AM (2013) Listening to limericks: a pupillometry investigation of perceivers’ expectancy. PLoS ONE 8(9):e74986. doi: 10.1371/journal.pone.0074986 CrossRefGoogle Scholar
  110. Samuels ER, Szabadi E (2008a) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol 6(3):235–253. doi: 10.2174/157015908785777229 CrossRefGoogle Scholar
  111. Samuels ER, Szabadi E (2008b) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol 6(3):254–285. doi: 10.2174/157015908785777193 CrossRefGoogle Scholar
  112. Schaefer HS, Larson CL, Davidson RJ, Coan JA (2014) Brain, body, and cognition: neural, physiological and self-report correlates of phobic and normative fear. Biol Psychol 98:59–69. doi: 10.1016/j.biopsycho.2013.12.011 CrossRefGoogle Scholar
  113. Siegle GJ, Steinhauer SR, Stenger VA, Konecky R, Carter CS (2003) Use of concurrent pupil dilation assessment to inform interpretation and analysis of fMRI data. Neuroimage 20(1):114–124CrossRefGoogle Scholar
  114. Simms TM (1967) Pupillary response of male and female subjects to pupillary differences in male and female picture stimuliGoogle Scholar
  115. Simpson HM, Hale SM (1969) Pupillary changes during a decision-making task. Percept Mot Skills 29(2):495–498CrossRefGoogle Scholar
  116. Simpson HM, Molloy FM (1971) Effects of audience anxiety on pupil size. Psychophysiology 8:491–496. doi: 10.1111/j.1469-8986.1971.tb00481.x CrossRefGoogle Scholar
  117. Steinhauer SR, Zubin J (1982) Vulnerability to schizophrenia: information processing in the pupil and event-related potential. In: Usdin E, Hanin I (eds) Biological markers in psvchiatrv and neurology. Pergamon Press, Oxford, pp 371–385CrossRefGoogle Scholar
  118. Steinhauer SR, Hakerem G (1992) The pupillary response in cognitive psychophysiology and schizophrenia. Ann N Y Acad Sci 658:182–204CrossRefGoogle Scholar
  119. Steinhauer SR (2002) Cognition, psychopathology, and recent pupil studies. www.wpic.pitt.edu/research/biometrics/Publications/PupilWeb.htm. Retrieved 12 Aug 2016
  120. Steinhauer SR, Siegle GJ, Condray J, Pless M (2004) Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. Int Psychophysiol 53:77–86Google Scholar
  121. Sterpenich V, D’Argembeau A, Desseilles M, Balteau E, Albouy G, Vandewalle G, Degueldre C, Luxen A, Collette F, Maquet P (2006) The locus ceruleus is involved in the successful retrieval of emotional memories in humans. J Neurosci 26:7416–7423CrossRefGoogle Scholar
  122. Tombs S, Silverman I (2004) Pupillometry—a sexual selection approach. Evol Human Behav 25:221–228CrossRefGoogle Scholar
  123. Tomlinson N, Hicks RA, Pellegrini (1978) Attributions of female college students to variations in pupil size. Bull Psychon Soc 12(6):477–478Google Scholar
  124. Tursky B, Shapiro D, Crider A, Kahneman D (1969) Pupillary, heart rate, and skin resistance changes during a mental task. J Exp Psychol 79(1):164–167CrossRefGoogle Scholar
  125. Ursin H, Kaada BR (1960) Functional localization within the amygdaloid complex in the cat. Electroencephalogr Clin Neurophysiol 12:1–20CrossRefGoogle Scholar
  126. Võ ML, Jacobs AM, Kuchinke L, Hofmann M, Conrad M, Schacht A, Hutzler F (2008) The coupling of emotion and cognition in the eye: introducing the pupil old/new effect. Psychophysiology 45(1):130–140Google Scholar
  127. Wang JT, Spezio M, Camerer CF (2006) Pinocchio’s pupil: using eyetracking and pupil dilation to understand truth-telling and deception in games. Am Econ Rev 100:984–1007CrossRefGoogle Scholar
  128. Wang CA, Boehnke SE, White BJ, Munoz DP (2012) Microstimulation of the monkey superior colliculus induces pupil dilation without evoking saccades. J Neurosci 14 32(11):3629–3636. doi: 10.1523/JNEUROSCI.5512-11.2012
  129. Wang CA, Boehnke SE, Itti L, Munoz DP (2014) Transient pupil response is modulated by contrast-based saliency. J Neurosci 34(2):408–417. doi: 10.1523/JNEUROSCI.3550-13.2014 CrossRefGoogle Scholar
  130. Wang CA, Brien DC, Munoz DP (2015) Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades. Eur J Neurosci 41(8):1102–1110. doi: 10.1111/ejn.12883 CrossRefGoogle Scholar
  131. Wang CA, Munoz DP (2015) A circuit for pupil orienting responses: implications for cognitive modulation of pupil size. Curr Opin Neurobiol 33:134–140. doi: 10.1016/j.conb.2015.03.018 CrossRefGoogle Scholar
  132. Watson AB, Yellott JI (2012) A unified formula for light-adapted pupil size. J Vis 12(10):12. doi: 10.1167/12.10.12 CrossRefGoogle Scholar
  133. Yellin D, Berkovich-Ohana A, Malach R (2015) Coupling between pupil fluctuations and resting-state fMRI uncovers a slow build-up of antagonistic responses in the human cortex. Neuroimage 1(106):414–427. doi: 10.1016/j.neuroimage.2014.11.034 CrossRefGoogle Scholar
  134. Yu AJ, Dayan P (2005) Uncertainty, neuromodulation, and attention. Neuron 46(4):681–692CrossRefGoogle Scholar
  135. Zekveld AA, Kramer SE (2014) Cognitive processing load across a wide range of listening conditions: insights from pupillometry. Psychophysiology 51(3):277–284CrossRefGoogle Scholar
  136. Zekveld AA, Heslenfeld DJ, Johnsrude IS, Versfeld NJ, Kramer SE (2014) The eye as a window to the listening brain: neural correlates of pupil size as a measure of cognitive listening load. Neuroimage 101:76–86. doi: 10.1016/j.neuroimage.2014.06.069 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Institut für PhysikTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations